精英家教网 > 高中数学 > 题目详情
12.已知Sn={A|A=(a1,a2,…,an),ai=0或1,i=0,1,2,…,n},对于U,V∈Sn,d(U,V)表示U,V中相对应的元素不同的个数.
(1)令U={1,1,1,1,1,1},存在m个V∈S6,使得d(U,V)=2,则m=15;
(2)若一确定U∈Sn的,对于任意的V∈Sn,则所有d(U,V)之和为n•2n-1

分析 (1)根据V∈S6,d(U,V)=2及d(U,V)的意义:表示U和V中相对应的元素不同的个数,可知m=C62
(2)易知Sn中共有2n个元素,分别记为vk(k=1,2,3,…,2n,v=(b1,b2,b3,…bn)bi=0的vk共有2n-1个,bi=1的vk共有2n-1个然后求和即可.

解答 解:(1)∵V∈S6,d(U,V)=2,
∴m=C62=15,即m=15;
故答案是:15;
(2)易知Sn中共有2n个元素,分别记为vk(k=1,2,3,…,2n,v=(b1,b2,b3,…bn),
∵bi=0的vk共有2n-1个,bi=1的vk共有2n-1个.
∴d(U,V)=2n-1(|a1-0|+|a1-1|+|a2-0|+a2-1|+|a3-0|+|a3-1|+…+|an-0|+|an-1|=n•2n-1
∴d(U,V)=n•2n-1
故答案为:n•2n-1

点评 此题是个难题.本题是综合考查集合推理综合的应用,这道题目的难点主要出现在读题上,需要仔细分析,以找出解题的突破点.题目所给的条件其实包含两个定义,第一个是关于Sn的,其实Sn中的元素就是一个n维的坐标,其中每个坐标值都是2012或2013,也可以这样理解,就是一个n位数字的数组,每个数字都只能是2012或2013,第二个定义d(U,V),正确理解这两个定义是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.对具有线性相关关系的变量x,y有一组观测数据(xi,yi)( i=1,2,…,8),其回归直线方程是$\stackrel{∧}{y}$=$\frac{1}{3}$x+a且x1+x2+…+x8=3,y1+y2+…+y8=5,则实数a是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线x=t分别与函数f(x)=ex的图象及g(x)=2x的图象相交于点A和点B,则|AB|的最小值为(  )
A.2B.3C.4-2ln2D.2-2ln2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知某几何体的三视图如图所示,其中网格纸的小正方形的边长是1,则该几何体    的表面积为(  )
A.4B.4+4$\sqrt{2}$C.8+4$\sqrt{2}$D.8+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某校医务室为了预防流感,准备从高一年级的10个班中抽取23名同学进行健康检查,要求每个班被抽到的同学不少于2人,那么不同的抽取方法共有(  )
A.120种B.175种C.220种D.820种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)计算:$cos\frac{9π}{4}+tan(-\frac{π}{4})+sin21π$;
(2)已知sinθ=2cosθ,求值$\frac{{{{sin}^2}θ+2sinθcosθ}}{{2{{sin}^2}θ-{{cos}^2}θ}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=xa的图象过点(4,2),令${a_n}=\frac{1}{f(n+1)+f(n)}$(n∈N*),记数列{an}的前n项和为Sn,则S2017=(  )
A.$\sqrt{2018}+1$B.$\sqrt{2018}-1$C.$\sqrt{2017}-1$D.$\sqrt{2017}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若|x+3|+|x-1|>k对任意的x∈R恒成立,则实数k的取值范围为(-∞,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=(-1,+∞).

查看答案和解析>>

同步练习册答案