精英家教网 > 高中数学 > 题目详情
20.已知某几何体的三视图如图所示,其中网格纸的小正方形的边长是1,则该几何体    的表面积为(  )
A.4B.4+4$\sqrt{2}$C.8+4$\sqrt{2}$D.8+2$\sqrt{2}$

分析 根据几何体的三视图,得出该几何体的结构特征是什么,由此求出表面积.

解答 解:由三视图知,该几何体是一个侧棱垂直于底面的四棱锥,底面为边长为2的正方形,高为2,
该几何体的表面积为2×2+2×$\frac{1}{2}×2×2$+2×$\frac{1}{2}×2×2\sqrt{2}$=8+4$\sqrt{2}$,
故选C.

点评 本题考查了几何体的三视图的应用问题,解题时应根据三视图得出几何体的结构特征,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知 A={y|y>1},B={x|lnx≥0},则A∩B=(  )
A.{x|x≥1}B.{x|x>1}C.{x|0<x<1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow{a}$=(an,2),$\overrightarrow{b}$=(an+1,$\frac{2}{5}$),且a1=1,若数列{an}的前n项和为Sn,且$\overrightarrow{a}$∥$\overrightarrow{b}$,则Sn=(  )
A.$\frac{5}{4}$[1-($\frac{1}{5}$)n]B.$\frac{1}{4}$[1-($\frac{1}{5}$)n]C.$\frac{1}{4}$[1-($\frac{1}{5}$)n-1]D.$\frac{5}{4}$[1-($\frac{1}{5}$)n-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若$C_n^{10}=C_n^8$,则$C_{20}^n$=(  )
A.380B.190C.18D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知复数z满足($\sqrt{3}$+3i)z=3i,则|z|=(  )
A.$\sqrt{2}$B.1C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.当h无限趋近于0时,$\lim_{h→0}$$\frac{(3+h)^{2}-{3}^{2}}{h}$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知Sn={A|A=(a1,a2,…,an),ai=0或1,i=0,1,2,…,n},对于U,V∈Sn,d(U,V)表示U,V中相对应的元素不同的个数.
(1)令U={1,1,1,1,1,1},存在m个V∈S6,使得d(U,V)=2,则m=15;
(2)若一确定U∈Sn的,对于任意的V∈Sn,则所有d(U,V)之和为n•2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知角α的终边过点P(-8sin390°,-6m),且$cosα=-\frac{4}{5}$,则m为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.±$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=\frac{1}{3}{x^3}+{x^2}+ax+1$,且曲线y=f(x)在点(0,1)处的切线斜率为-3.
(1)求f(x)单调区间;
(2)求f(x)的极值.

查看答案和解析>>

同步练习册答案