精英家教网 > 高中数学 > 题目详情
1.若|x+3|+|x-1|>k对任意的x∈R恒成立,则实数k的取值范围为(-∞,4).

分析 |x+3|+|x-1|>k对任意的x∈R恒成立,等价于(|x+3|+|x-1|)min>k,利用不等式的性质即可求得最小值.

解答 解:|x+3|+|x-1|>k对任意的x∈R恒成立,等价于(|x+3|+|x-1|)min>k,
∵|x+3|+|x-1|≥|(x+3)-(x-1)|=4,
∴k<4,即实数k的取值范围是(-∞,4),
故答案为:(-∞,4).

点评 该题考查函数恒成立问题、绝对值不等式的性质,考查转化思想,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow{a}$=(an,2),$\overrightarrow{b}$=(an+1,$\frac{2}{5}$),且a1=1,若数列{an}的前n项和为Sn,且$\overrightarrow{a}$∥$\overrightarrow{b}$,则Sn=(  )
A.$\frac{5}{4}$[1-($\frac{1}{5}$)n]B.$\frac{1}{4}$[1-($\frac{1}{5}$)n]C.$\frac{1}{4}$[1-($\frac{1}{5}$)n-1]D.$\frac{5}{4}$[1-($\frac{1}{5}$)n-1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知Sn={A|A=(a1,a2,…,an),ai=0或1,i=0,1,2,…,n},对于U,V∈Sn,d(U,V)表示U,V中相对应的元素不同的个数.
(1)令U={1,1,1,1,1,1},存在m个V∈S6,使得d(U,V)=2,则m=15;
(2)若一确定U∈Sn的,对于任意的V∈Sn,则所有d(U,V)之和为n•2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知角α的终边过点P(-8sin390°,-6m),且$cosα=-\frac{4}{5}$,则m为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.±$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.?x∈[-2,1],使不等式ax3-x2+4x+3≥0成立,则实数a的取值范围是(  )
A.[-5,-3]B.[-6,-$\frac{9}{8}$]C.[-6,-2]D.[-4,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知|$\overrightarrow{a}$|=4,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$,则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面直角坐标系中,方程x2+y2=1所对应的图象经过伸缩变换$\left\{\begin{array}{l}x'=5x\\ y'=3y\end{array}\right.$后的图象所对应的方程为$\frac{x^2}{25}+\frac{y^2}{9}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=\frac{1}{3}{x^3}+{x^2}+ax+1$,且曲线y=f(x)在点(0,1)处的切线斜率为-3.
(1)求f(x)单调区间;
(2)求f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$f(x)={x^{-2{m^2}+m+3}}(m∈{Z})$是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a=f(log47),$b=f({{{log}_{\frac{1}{2}}}3})$,c=f(21,6),则a,b,c的大小关系是(  )
A.c<a<bB.c<b<aC.b<c<aD.a<c<b

查看答案和解析>>

同步练习册答案