分析 (1)利用诱导公式化简所给的三角函数式,可得结果.
(2)由已知可得tanθ=2,再利用同角三角函数的基本关系求得要求式子的值.
解答 解:(1)$cos\frac{9π}{4}+tan(-\frac{π}{4})+sin21π$=cos$\frac{π}{4}$-tan$\frac{π}{4}$+sinπ=$\frac{\sqrt{2}}{2}$-1+0=$\frac{\sqrt{2}}{2}$-1.
(2)∵已知sinθ=2cosθ,∴tanθ=2,∴$\frac{{{{sin}^2}θ+2sinθcosθ}}{{2{{sin}^2}θ-{{cos}^2}θ}}$=$\frac{{tan}^{2}θ+2tanθ}{{2tan}^{2}θ-1}$=$\frac{4+4}{2•4-1}$=$\frac{8}{7}$.
点评 本题主要考查同角三角函数的基本关系、诱导公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | ±$\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com