精英家教网 > 高中数学 > 题目详情
7.已知{fn(x)}满足${f_1}(x)=\frac{x}{{\sqrt{1+{x^2}}}}(x>0)$,fn+1(x)=f1(fn(x)).
(1)求f2(x),f3(x),并猜想fn(x)的表达式;
(2)用数学归纳法证明对fn(x)的猜想.

分析 (1)依题意,计算f2(x)=f1[f1(x)]可求得f2(x),同理可求f3(x),可猜想想:${f_n}(x)=\frac{x}{{\sqrt{1+n{x^2}}}}$,(n∈N*
(2)用数学归纳法证明即可.

解答 解:(1)${f_2}(x)={f_1}[{f_1}(x)]=\frac{{{f_1}(x)}}{{\sqrt{1+{f_1}^2(x)}}}=\frac{x}{{\sqrt{1+2{x^2}}}}$,
${f_3}(x)={f_1}[{f_2}(x)]=\frac{{{f_2}(x)}}{{\sqrt{1+{f_2}^2(x)}}}=\frac{x}{{\sqrt{1+3{x^2}}}}$
猜想:${f_n}(x)=\frac{x}{{\sqrt{1+n{x^2}}}}$,(n∈N*
(2)下面用数学归纳法证明${f_n}(x)=\frac{x}{{\sqrt{1+n{x^2}}}}$,(n∈N*
①当n=1时,${f_1}(x)=\frac{x}{{\sqrt{1+{x^2}}}}$,显然成立;
②假设当n=k(k∈N*)时,猜想成立,即${f_k}(x)=\frac{x}{{\sqrt{1+k{x^2}}}}$,
则当n=k+1时,${f_{k+1}}(x)={f_1}[{f_k}(x)]=\frac{{\frac{x}{{\sqrt{1+k{x^2}}}}}}{{\sqrt{1+{{(\frac{x}{{\sqrt{1+k{x^2}}}})}^2}}}}=\frac{x}{{\sqrt{1+(k+1){x^2}}}}$
即对n=k+1时,猜想也成立;
结合①②可知,猜想${f_n}(x)=\frac{x}{{\sqrt{1+n{x^2}}}}$对一切n∈N*都成立.

点评 本题考查归纳推理,着重考查数学归纳法的应用,突出考查推理证明的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.(1)计算:$cos\frac{9π}{4}+tan(-\frac{π}{4})+sin21π$;
(2)已知sinθ=2cosθ,求值$\frac{{{{sin}^2}θ+2sinθcosθ}}{{2{{sin}^2}θ-{{cos}^2}θ}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(α)=$\frac{sin(π-α)cos(2π-α)cos(\frac{3π}{2}+α)}{cos(\frac{π}{2}+α)sin(π+α)}$
(1)若α=-$\frac{π}{3}$,求f(α)的值;
(2)若α为第二象限角,且cos(α-$\frac{π}{2}$)=$\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.静宁县是甘肃苹果栽培第一大县,中国著名优质苹果基地和重要苹果出口基地.静宁县海拔高、光照充足、昼夜温差大、环境无污染,适合种植苹果.“静宁苹果”以色泽鲜艳、质细汁多,酸甜适度,口感脆甜、货架期长、极耐储藏和长途运输而著名.为检测一批静宁苹果,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量)[80,85)[85,90)[90,95)[95,100)
频数(个)5102015
(1)根据频数分布表计算苹果的重量在[90,95)的频率;
(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知首项都是1的两个数列{an},{bn}$({{b_n}≠0,n∈{N^*}})$满足anbn+1-an+1bn-2an+1an=0.
(1)令${c_n}=\frac{b_n}{a_n}$,求证数列{cn}为等差数列;
(2)若${a_n}={3^{n-1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知实数x,y满足$\left\{\begin{array}{l}x-y≥3\\ x+2y≥6\\ x≤8\end{array}\right.$,则$\frac{y}{x}$的取值范围为$[{-\frac{1}{8},\frac{5}{8}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆x2+y2+2x-4y+3=0.
(1)直线l过点(-2,0)且被圆C截得的弦长为2,求直线的方程;
(2)从圆C外一点P向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求点P的坐标所适合的方程,并求|PM|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.已知从全部105人中随机抽取1人为优秀的概率为$\frac{2}{7}$.
(1)请完成上面的列联表:若按95%的可靠性要求,根据列联表的数据,能否认为“成绩与班级有关系”;
(2)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到10号的概率.
优秀非优秀总计
甲班104555
乙班203050
合计3075105
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.050.01
k3.8416.635

查看答案和解析>>

同步练习册答案