精英家教网 > 高中数学 > 题目详情
18.已知f(α)=$\frac{sin(π-α)cos(2π-α)cos(\frac{3π}{2}+α)}{cos(\frac{π}{2}+α)sin(π+α)}$
(1)若α=-$\frac{π}{3}$,求f(α)的值;
(2)若α为第二象限角,且cos(α-$\frac{π}{2}$)=$\frac{3}{5}$,求f(α)的值.

分析 (1)根据三角恒等变换的公式,化简f(α)=cosα,即可求解当α=$-\frac{π}{3}$时,f(α)的值;
(2)由cos(α-$\frac{π}{2}$)=$\frac{3}{5}$,解得sinα=$\frac{3}{5}$,进而求解cosα的值.

解答 解:f(α)=$\frac{sin(π-α)cos(2π-α)cos(\frac{3π}{2}+α)}{cos(\frac{π}{2}+α)sin(π+α)}$=$\frac{sinαcosαsinα}{(-sinα)(-sinα)}=cosα$,
(1)$f(-\frac{π}{3})=cos(-\frac{π}{3})=cos\frac{π}{3}=\frac{1}{2}$;
(2)∵cos(α-$\frac{π}{2}$)=cos($\frac{π}{2}$-α)=$\frac{3}{5}$,∴$sinα=\frac{3}{5}$,
∵α是第二象限角,∴$cosα=-\frac{4}{5}$,
∴$f(α)=cosα=-\frac{4}{5}$.

点评 本题考查了三角函数的化简求值,考查了三角函数的诱导公式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若$C_n^{10}=C_n^8$,则$C_{20}^n$=(  )
A.380B.190C.18D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知角α的终边过点P(-8sin390°,-6m),且$cosα=-\frac{4}{5}$,则m为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.±$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知|$\overrightarrow{a}$|=4,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$,则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面直角坐标系中,方程x2+y2=1所对应的图象经过伸缩变换$\left\{\begin{array}{l}x'=5x\\ y'=3y\end{array}\right.$后的图象所对应的方程为$\frac{x^2}{25}+\frac{y^2}{9}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设{an}为等差数列,若$\frac{{{a_{11}}}}{{{a_{10}}}}<-1$,且它的前n项和Sn有最小值,那么当Sn取得最小正值时,n=20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=\frac{1}{3}{x^3}+{x^2}+ax+1$,且曲线y=f(x)在点(0,1)处的切线斜率为-3.
(1)求f(x)单调区间;
(2)求f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知{fn(x)}满足${f_1}(x)=\frac{x}{{\sqrt{1+{x^2}}}}(x>0)$,fn+1(x)=f1(fn(x)).
(1)求f2(x),f3(x),并猜想fn(x)的表达式;
(2)用数学归纳法证明对fn(x)的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.上周某校高三年级学生参加了数学测试,年部组织任课教师对这次考试进行成绩分析.现从中随机选取了40名学生的成绩作为样本,已知这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组[40,50);第二组[50,60);…;第六组[90,100],并据此绘制了如图所示的频率分布直方图.
(Ⅰ)估计这次月考数学成绩的平均分和众数;
(Ⅱ)从成绩大于等于80分的学生中随机选2名,求至少有1名学生的成绩在区间[90,100]内的概率.

查看答案和解析>>

同步练习册答案