精英家教网 > 高中数学 > 题目详情
5.设函数f(x)在R上存在导函数f′(x),对于任意的实数x,都有f(x)=4x2-f(-x),当x∈(-∞,0)时,f′(x)<4x,若f(m+1)≤f(-m)+4m+2,则实数m的取值范围是(  )
A.[-$\frac{1}{2}$,+∞)B.[-$\frac{3}{2}$,+∞)C.[-1,+∞)D.[-2,+∞)

分析 利用构造法设g(x)=f(x)-2x2,推出g(x)为奇函数,判断g(x)的单调性,然后推出不等式得到结果.

解答 解:∵f(x)=4x2-f(-x),
∴f(x)-2x2+f(-x)-2x2=0,
设g(x)=f(x)-2x2,则g(x)+g(-x)=0,
∴函数g(x)为奇函数.
∵x∈(-∞,0)时,f′(x)<4x,
g′(x)=f′(x)-4x<0,
故函数g(x)在(-∞,0)上是减函数,
故函数g(x)在(0,+∞)上也是减函数,
若f(m+1)≤f(-m)+4m+2,
则f(m+1)-2(m+1)2≤f(-m)-2m2
即g(m+1)≤g(-m),
∴m+1≥-m,解得:m≥-$\frac{1}{2}$,
故选:A.

点评 本题考查函数奇偶性、单调性、导数的综合应用,考查分析问题解决问题的能力,难度比较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在底面为正三角形的直棱柱(侧棱垂直于底面的棱柱)ABC-A1B1C1中,AB=2,AA1=3,点D为棱BD的中点,点E为A,C上的点,且满足A1E=mEC(m∈R),当二面角E-AD-C的余弦值为$\frac{\sqrt{10}}{10}$时,实数m的值为(  )
A.1B.2C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若点P对应的复数z满足|z|≤1,则P的轨迹是(  )
A.直线B.线段C.D.单位圆以及圆内

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知$\overrightarrow a$=(2,1),$\overrightarrow b$=(m,-1),若$\overrightarrow a∥\overrightarrow b$,则m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为y=0.7x+0.35,则表中m的值为(  )
x3.54.55.56.5
y34m45
A.1B.0.85C.0.95D.0.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若关于x的不等式|ax-2|<3的解集为{x|-$\frac{5}{3}$<x<$\frac{1}{3}$},则a=(  )
A.-2B.2C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C的中心在坐标原点,焦点坐标为(2,0),短轴长为4$\sqrt{3}$.
(1)求椭圆C的标准方程及离心率;
(2)设P是椭圆C上一点,且点P与椭圆C的两个焦点F1、F2构成一个以∠PF2F1为直角的直角三角形,求$\frac{|P{F}_{1}|}{|P{F}_{2}|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD中,BC∥AD,BC=1,AD=3,AC⊥CD,且平面PCD⊥平面ABCD.
(1)求证:AC⊥PD;
(2)在线段PA上是否存在点E,使BE∥平面PCD?若存在,确定点E的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=|x-a|是(1,+∞)上的单调递增函数,则实数a的取值范围是(-∞,1].

查看答案和解析>>

同步练习册答案