定义在R上的函数f(x)满足f(x)+f(x+5)=16,当x∈(-1,4]时,f(x)=x2-2x,则函数f(x)在[0,2013]上的零点个数是________.
604
[解析] 由f(x)+f(x+5)=16,可知f(x-5)+f(x)=16,则f(x+5)-f(x-5)=0,所以f(x)是以10为周期的周期函数.∵x∈(-1,4]时,x2∈[0,16],2x∈(
,16],∴x2-2x<16,∴x∈(-1,4]时,f(x)<16.
∴当x∈(4,9]时,x-5∈(-1,4],∴f(x-5)<16,
f(x)=16-f(x+5)=16-f(x-5)>0,∴f(x)在(4,9]上无零点,因此在一个周期(-1,9]上,函数f(x)=x2-2x在区间(-1,4]内有3个零点,在(4,9]区间内无零点,故f(x)在一个周期内仅有3个零点,由于区间(3,2013]中包含201个周期,且在区间[0,3]内也存在一个零点x=2,故f(x)在[0,2013]上的零点个数为3×201+1=604.
科目:高中数学 来源: 题型:
设A,B是x轴上的两点,点P的横坐标为3,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是( )
A.x+y-5=0 B.2x-y-1=0
C.x-2y+4=0 D.x+y-7=0
查看答案和解析>>
科目:高中数学 来源: 题型:
点(
,2)在幂函数f(x)的图象上,点(-2,
)在幂函数g(x)的图象上,当x分别为何值时,有f(x)>g(x),f(x)=g(x),f(x)<g(x)成立?
查看答案和解析>>
科目:高中数学 来源: 题型:
函数f(x)在[-2,2]内的图象如图所示,若函数f(x)的导函数f ′(x)的图象也是连续不间断的,则导函数f ′(x)在(-2,2)内有零点( )
![]()
A.0个 B.1个
C.2个 D.至少3个
查看答案和解析>>
科目:高中数学 来源: 题型:
设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x)=f(x+4),且当x∈[-2,0]时,f(x)=(
)x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有三个不同的实数根,则a的取值范围为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
在直角坐标系xOy中,以O为圆心的圆与直线x-
相切.
(1)求圆O的方程;
(2)圆O与x轴相交于A,B两点,圆内的动点P使|PA|,|PO|,|PB|成等比数列,求
·
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知抛物线y2=2px的焦点F与双曲线
-
=1的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上,且|AK|=
|AF|,则△AFK的面积为( )
A.4 B.8
C.16 D.32
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com