精英家教网 > 高中数学 > 题目详情
如图,以Ox为始边分别作角α与β(0<α<β<π),它们的终边分别与单位圆相交于点P、Q,已知点P的坐标为(
3
5
4
5
).
(1)求sin2α的值;
(2)若β-α=
π
2
,求cos(α+β)的值.
考点:单位圆与周期性
专题:三角函数的求值
分析:(1)由三角函数的定义,得出cosα、sinα,从而求出sin2α的值;
(2)由β-α=
π
2
,求出sinβ,cosβ的值,从而求出cos(α+β)的值.
解答: 解:(1)由三角函数的定义得,
cosα=
3
5
,sinα=
4
5

∴sin2α=2sinαcosα=2×
4
5
×
3
5
=
24
25


(2)∵β-α=
π
2

∴sinβ=sin(
π
2
+α)=cosα=
3
5

cosβ=cos(
π
2
+α)=-sinα=-
4
5

∴cos(α+β)=cosαcosβ-sinαsinβ=
3
5
×(-
4
5
)-
4
5
×
3
5
=-
24
25
点评:本题考查了三角函数的求值与应用问题,解题时应根据三角函数的定义以及三角恒等公式进行计算,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某单位随机统计了某4天的用电量(度)与当天气温(℃)如下表,以了解二者的关系.
气温(℃) 18 13 10 -1
用电量(度) 24 34 38 64
由表中数据得回归直线方程y=-2x+a,则a=(  )
A、60B、58
C、40D、以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

直角△A1B1C1的斜边为A1B1,面积为S1,直角△A2B2C2的斜边为A2B2,面积为S2,若△A1B1C1∽△A2B2C2,A1B1:A2B2=1:2,则S1:S2等于(  )
A、2:1
B、1:2
C、1:
2
D、1:4

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点作斜率为2的直线交抛物线于A、B两点,求AB的长度.(注:若A(x1,y2)、B(x2,y2),弦长AB=
1+k2
(x1+x2)2-4x1x2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=x-ax2-lnx.
(1)若f(x)是单调函数,求实数a的取值范围;
(2)若f(x)有两个极值点x1、x2,证明:f(x1)+f(x2)>3-2ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(-1,
3
),
n
=(cosx,sinx),f(x)=
m
n

(Ⅰ)若cosθ=
3
5
,0<θ<
π
2
,求f(θ);
(Ⅱ)若1≤f(θ)≤
3
,θ∈[0,π],求θ的取范围;
(Ⅲ)在条件(Ⅱ)下,求函数F(θ)=
f(θ)
f(
π
2
+θ)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在山底测得山顶仰角∠CAB=45°,沿倾斜角为30°的斜坡走1000米至S点,又测得山顶仰角为75°,求山高BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数fn(x)=x-(3n-1)x2(其中n∈N*),区间In={x|fn(x)>0}.
(Ⅰ)定义区间(α,β)的长度为β-α,求区间In的长度;
(Ⅱ)把区间In的长度记作数列{an},令bn=an•an+1
(1)求数列{bn}的前n项和Tn
(2)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
5
13
,且α∈(
π
2
,π).
(1)求tanα的值;
(2)求
cos2α
2
sin(α+
π
4
)
的值.

查看答案和解析>>

同步练习册答案