精英家教网 > 高中数学 > 题目详情
已知sinα+cosα=
1
3
,则sinαcosα=(  )
A、
1
2
B、-
1
2
C、-
4
9
D、-
8
9
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:将已知等式两边平方,利用完全平方公式及同角三角函数间基本关系化简,即可求出所求式子的值.
解答: 解:将sinα+cosα=
1
3
,两边平方得:(sinα+cosα)2=1+2sinαcosα=
1
9

则sinαcosα=-
4
9

故选:C.
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

cos110°cos20°+sin110°sin20°的值为(  )
A、-1B、1C、0D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)是定义在R上的奇函数,在(-1,0)上是增函数,且f(x+2)=-f(x),则下列关系式中正确的是(  )
A、f(
1
3
)<f(
1
2
)<f(
4
3
B、f(
1
3
)<f(
4
3
)<f(
1
2
C、f(
4
3
)<f(
1
3
)<f(
1
2
D、f(
1
3
)<f(
4
3
)<f(
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanαsinα<0且sinαcosα>0,则α所在象限为(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
lg(1-x)
x+1
的定义域为(  )
A、(-∞,-1)∪(1,+∞)
B、(-∞,-1)∪[1,+∞)
C、[-1,1)
D、(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各组函数表示相等函数的是(  )
A、y=
x2-1
x-1
与 y=x+1
B、y=
3-x3
-1
与y=-x-1
C、y=x0与 y=1
D、y=
x2
与y=x

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x>-1},B={x|-2<x<2},则A∩B(  )
A、{x|x>-2}
B、{x|x>-1}
C、{x|-2<x<-1}
D、{x|-1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,小圆圈表示网络的结点,结点之间的箭头表示它们有网线相联,连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点G传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为(  )
A、31B、6C、10D、14

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-2≤x≤4},B={x|x>a}.
(Ⅰ)A∩B=∅,求实数a的取值范围;
(Ⅱ)A∩B≠∅且A∩B≠A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案