精英家教网 > 高中数学 > 题目详情
20.函数y=[x]叫做“取整函数”,其中符号[x]表示x的整数部分,即[x]是不超过x的最大整数,例如[2]=2;[2.1]=2;[-2.2]=-3,那么[lg1]+[lg2]+[lg3]+…+[lg2016]的值为4941.

分析 分类讨论,当1≤n≤9时,[lgn]=0;当10≤n≤99时,[lgn]=1;当100≤n≤999时,[lgn]=2;当1000≤n≤9999时,[lgn]=3;从而分别求和即可.

解答 解:当1≤n≤9时,
[lgn]=0,
当10≤n≤99时,
[lgn]=1,
当100≤n≤999时,
[lgn]=2,
当1000≤n≤9999时,
[lgn]=3,
故[lg1]+[lg2]+[lg3]+…+[lg2016]
=0×9+1×90+2×900+3×1017
=90+1800+3051
=4941,
故答案为:4941.

点评 本题考查了分类讨论的思想应用及对数运算的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在边长为1的正方体ABCD-A1B1C1D1中.
(1)求∠CAB1的度数;
(2)求二面角B-AC-B1的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出如下四个命题,其中正确的命题的个数是
①若“p或q”为假命题,则p、q均为假命题;
②命题“若x≥4且y≥2,则x+y≥6”的否命题为“若x<4且y<2,则x+y<6”;
③在△ABC中,“A>30°”是“$sinA>\frac{1}{2}$”的充要条件;
④命题“?x0∈R,e${\;}^{{x}_{0}}$≤0”是真命题.(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,二面角α-l-β的面α内有一条直线AB,它与棱l的夹角为45°.AB与平面β所成的角为30°.求这个二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=cos2x-2sinxcosx-sin2x,g(x)=2cos2x+2sinxcosx-1,把f(x)的图象向右平移m个单位后,图象恰好为函数g(x)的图象,则m的值可以是(  )
A.πB.$\frac{3π}{4}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求f(x)=$\frac{x-1}{{x}^{2}+1}$,x∈[0,4]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,四棱锥S-ABCD底面是正方形,SD⊥平面ABCD,SD=AD=2,点E是SD的中点,F是BC线段上的点,O是AC与BD的交点.
(Ⅰ)求证:OE∥平面SBC;
(Ⅱ)若F为BC的中点,求二面角C-OE-F的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}中,a1=1,若an+1+an=$\frac{1}{{a}_{n+1}-{a}_{n}}$,求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知平面直角坐标系xOy中的一个椭圆,它的中心在原点,焦点在x轴上,且短轴长为2,离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)若P是椭圆上的动点,点A(1,$\frac{1}{2}$),求线段PA中点M的轨迹方程;
(Ⅲ)过点Q(0,1)的直线l交椭圆于不相同的两点,当弦长为$\frac{4\sqrt{2}}{3}$时,求直线l的方程.

查看答案和解析>>

同步练习册答案