精英家教网 > 高中数学 > 题目详情
15.对于集合A={(x,y)|$\left\{\begin{array}{l}{x+y≤2}\\{x-y≤4}\\{x≥1}\end{array}\right.$}.命题p:至少存在一个点(x0,y0)∈A,使得代数式y0=2${\;}^{{x}_{0}-m}$-1成立,则实数m的取值范围为[1,3].

分析 画出满足条件的平面区域,显然y=2x-m-1恒过(m,-1)这个点,问题转化为点(m,-1)在线段AB上即可,从而求出m的范围即可.

解答 解:画出满足条件的平面区域,如图示:
由$\left\{\begin{array}{l}{y=-1}\\{x=1}\end{array}\right.$得A(1,-1),由$\left\{\begin{array}{l}{x=1}\\{x-y=4}\\{x+y=2}\end{array}\right.$得B(1,3),
连结AB,
显然y=2x-m-1恒过(m,-1)这个点,
若至少存在一个点(x0,y0)∈A,使得代数式y0=2${\;}^{{x}_{0}-m}$-1成立,
只需(m,-1)在线段AB上即可,
∴1≤m≤3,
故答案为:[1,3].

点评 本题考查了简单的线性规划问题,问题转化为点(m,-1)在线段AB上是解题的关键,本题是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|lgx|,
(1)判断f($\frac{1}{4}$)、f($\frac{1}{3}$)、f(2)的大小关系;
(2)若0<a<b,且f(a)>f(b),试比较ab与1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,过点F作x轴的垂线交双曲线的右支于C,D两点,与双曲线的渐近线交于点P,点C和点P在第-象限,点D在第四象限,若|PC|=|CD|,则该双曲线的离心率为(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{3\sqrt{5}}{5}$C.$\frac{3\sqrt{2}}{4}$D.$\frac{9}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)=\left\{{\begin{array}{l}{1-|x|,x<1}\\{{{(x-1)}^2},x>1}\end{array}}\right.$,若方程f2(x)+af(x)+b=0有五个不同的根,则a的取值范围为(-2,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某校团委准备组织学生志愿者去野外植树,该校有高一、高二年级志愿者的人数分别为150人、100人,为偏于管理,团委决定从这两个年级中选5名志愿者作为临时干部.
(Ⅰ)若用分层抽样法选取,则5位临时干部应分别从高一和高二年级中各选几人?
(Ⅱ)若从选取的5为临时干部中,任选2人担任主要负责人,问此两人分别来自高一和高二年级的概率为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.从集合A={-2,-1,2}中随机选取一个数记为a,从集合B={-1,1,3}中随机选取一个数记为b,则直线ax-y+b=0不经过第四象限的概率为(  )
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.二项式${(ax-\frac{{\sqrt{3}}}{6})^3}$(a>0)的展开式的第二项的系数为-$\frac{{\sqrt{3}}}{2}$,则$\int_{-2}^a{x^2}$dx的值为(  )
A.3或$\frac{7}{3}$B.$\frac{7}{3}$C.3D.3或$-\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某公司做了用户对其产品满意度的问卷调查,随机抽取了20名用户的评分,得到图3所示茎叶图,对不低于75的评分,认为用户对产品满意,否则,认为不满意,
(Ⅰ)根据以上资料完成下面的2×2列联表,若据此数据算得K2=3.7781,则在犯错的概率不超过5%的前提下,你是否认为“满意与否”与“性别”有关?
不满意满意合计
47
合计
附:
P(K2≥k)0.1000.0500.010
k2.7063.8416.635
(Ⅱ) 估计用户对该公司的产品“满意”的概率;
(Ⅲ) 该公司为对客户做进一步的调查,从上述对其产品满意的用户中再随机选取2人,求这两人都是男用户或都是女用户的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设a>b>0,则a2+$\frac{1}{4b(a-b)}$的最小值是2.

查看答案和解析>>

同步练习册答案