精英家教网 > 高中数学 > 题目详情
1.已知变量x,y满足约束条件$\left\{\begin{array}{l}{y-1≤0}\\{x+y≥0}\\{x-y-2≤0}\end{array}\right.$,则z=2x•4y的最大值为32.

分析 由z=2x•4y得z=2x+2y,设m=x+2y,作出不等式组对应的平面区域,利用m的几何意义,即可得到结论.

解答 解:z=2x•4y得z=2x+2y,设m=x+2y,
得y=-$\frac{1}{2}$x+$\frac{1}{2}$m,
平移直线y=-$\frac{1}{2}$x+$\frac{1}{2}$m由图象可知当直线y=-$\frac{1}{2}$x+$\frac{1}{2}$m经过点A时,
直线y=-$\frac{1}{2}$x+$\frac{1}{2}$m的截距最大,
由$\left\{\begin{array}{l}{y-1=0}\\{x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,
即A(3,1),
此时m最大为m=3+2=5,
此时z最大为z=2x+2y=25=32,
故答案为:32

点评 本题主要考查线性规划的应用,利用图象平行以及指数函数的运算法则,利用数形结合是解决线性规划问题中的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=xlnx.
(Ⅰ) 求f(x)的极值;
(Ⅱ)设g(x)=f(x+1),若对任意的x≥0,都有g(x)≥mx成立,求实数m的取值范围;
(Ⅲ)若0<a<b,证明:$0<f(a)+f(b)-2f(\frac{a+b}{2})<(b-a)ln2$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\sqrt{3}$sinxcosx-cos2x+$\frac{1}{2}$(x∈R).
(1)求函数f(x)的单调区间;
(2)求函数f(x)在区间[0,$\frac{π}{4}$]上的函数值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,O为△ABC的重心,则$\overrightarrow{OA}$可用$\overrightarrow{a}$,$\overrightarrow{b}$表示为$-\frac{1}{3}$($\overrightarrow{a}$+$\overrightarrow{b}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某同学为了计算函数y=lnx图象与x轴,直线x=1,x=e所围成形状A的面积,采用“随机模拟方法”,用计算机分别产生10个在[1,e]上的均匀随机数xi(1≤i≤10)和10个在[0,1]上的均匀随机数yi(1≤i≤10),其数据记录为如下表的前两行.
xi2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22
yi0.84 0.25 0.98 0.15 0.01 0.60 0.59 0.88 0.84 0.10
lnxi0.92 0.01 0.64 0.20 0.92 0.77 0.64 0.67 0.31 0.80
(1)依次表格中的数据回答,在图形A内的点有多少个,分别是什么?
(2)估算图形A的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=ln(1+x),g(x)=xf′(x),x,其中f′(x)是f(x)的导函数.
(1)令g1(x)=g(x),gn+1(x)=g(gn(x))(x),n∈N+,猜想gn(x)的表达式;
(2)若f(x)≥ag(x)恒成立,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.
(1)求a和b的值;
(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;
(3)设h(x)=f(f(x))-c,其中c∈[-2,2],求函数y=h(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知i为虚数单位,若$\frac{1+i}{z}=1-2i$,则复数z所对应的点所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{m}$=(2sinωx,cos2ωx-sin2ωx),$\overrightarrow{n}$=($\sqrt{3}$cosωx,1)其中ω>0,x∈R,若函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的最小正周期为π.
(1)求ω的值及f(x)的对称轴方程;
(2)在△ABC中,角A,B,C的对边为a,b,c,若f(B)=-2,BC=$\sqrt{3}$,2bcosA=$\sqrt{3}$(ccosA+acosC),求$\overrightarrow{BA}$•$\overrightarrow{BC}$的值.

查看答案和解析>>

同步练习册答案