精英家教网 > 高中数学 > 题目详情
20.已知角α是第二象限角,且$sinα=\frac{5}{13}$,则cosα=(  )
A.-$\frac{12}{13}$B.-$\frac{5}{13}$C.$\frac{5}{13}$D.$\frac{12}{13}$

分析 由角的范围和同角三角函数基本关系可得cosα=-$\sqrt{1-si{n}^{2}α}$,代值计算可得.

解答 解:∵角α是第二象限角,且$sinα=\frac{5}{13}$,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{12}{13}$,
故选:A

点评 本题考查同角三角函数基本关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.对于下列四个命题
${p_1}:?{x_0}∈(0,+∞),{(\frac{1}{2})^{x_0}}<{(\frac{1}{3})^{x_0}}$;
${p_2}:?{x_0}∈(0,1),{log_{\frac{1}{2}}}{x_0}>{log_{\frac{1}{3}}}{x_0}$;
${p_3}:?x∈(0,+∞),{(\frac{1}{2})^x}<{log_{\frac{1}{2}}}x$;
${p_4}:?x∈(0,\frac{1}{3}),{(\frac{1}{2})^x}<{log_{\frac{1}{3}}}x$.
其中的真命题是(  )
A.p1,p3B.p1,p4C.p2,p3D.p2,p4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设i为虚数单位,则复数$\frac{i-2}{i}$的共轭复数是1-2i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=2cos2(x+$\frac{π}{8}$)-2sin(x+$\frac{π}{8}$)cos(x+$\frac{π}{8}$)-1的最大值是(  )
A.$\sqrt{2}$B.2C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为了测量学校操场四边形ABCD的周长和面积,在操场中间取一点O.测得OA=40m,OB=37m,OC=42m,OD=44m,且∠DOA=120°,∠AOB=60°,∠BOC=45°,∠COD=135°.
(1)试求四边形的周长;
(2)试求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求$\underset{\underbrace{4+\frac{1}{4+\frac{1}{4+\frac{1}{4+…}}}}}{共10个4}$,画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在数列{an}中,Sn=2n+1,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$=$\frac{4}{3}$-$\frac{1}{{2}^{n-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在平面四边形ABCD中,AB⊥AD,AB=1,AC=$\sqrt{7}$,∠ABC=$\frac{2π}{3}$,∠ACD=$\frac{π}{3}$.
(Ⅰ)求sin∠BAC;
(Ⅱ)求DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.锐角△ABC中,a+b=2c(cosA+cosB)且c=$\sqrt{3}$,则ab的取值范围是(0,3$\sqrt{2}$).

查看答案和解析>>

同步练习册答案