精英家教网 > 高中数学 > 题目详情
13.在第一、三象限的角平分线上找一点P,使它到点A(-2,0)的距离等于10,则点P的坐标为.
A.(-8,-8)B.(6,6)C.(8,8)D.(6,6)或(-8,-8)

分析 设点P(a,a),则由题意可得PA=$\sqrt{{(a+2)}^{2}{+(a-0)}^{2}}$=10,花简求得a的值,可得点P的坐标.

解答 解:设点P(a,a),则由题意可得PA=$\sqrt{{(a+2)}^{2}{+(a-0)}^{2}}$=10,
化简可得a2+2a-48=0,求得a=-8,或a=6,
故点P的坐标为(6,6)或(-8,-8),
故选:D.

点评 本题主要考查两点间的距离公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知直线l的方程为x=-2,且直线l与x轴交于点M,圆O:x2+y2=1与x轴交于A,B两点(如图).
(Ⅰ)过M点的直线l1交圆于P、Q两点,且圆弧PQ恰为圆周的$\frac{1}{4}$,求直线l1的方程;
(Ⅱ)求中心在原点,焦点在x轴,离心率为$\frac{{\sqrt{2}}}{2}$,且与圆O恰有两个公共点的椭圆方程;
(Ⅲ)过M点的圆的切线l2交(Ⅱ)中的一个椭圆于C、D两点,其中C、D两点在x轴上方,求线段CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,是奇函数,又在区间(0,+∞)上是增函数的是(  )
A.y=x2B.y=$\sqrt{x}$C.y=-x3D.y=lg2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若$\overrightarrow{a}$=(3,-4),$\overrightarrow{b}$=(4,3),则向量$\overrightarrow{a}$、$\overrightarrow{b}$夹角的余弦值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,设抛物线y2=2px与圆(x-5)2+y2=16在x轴上方的交点为A和B,线段AB的中点C(4,yC
(1)求抛物线方程;
(2)直线AB与x轴相交于D,求D到圆的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某几何体在网格纸上的三视图如图所示,已知网格纸上小正方形的边长为1,则该几何体的体积为(  )
A.$\frac{4π}{3}$B.$\frac{5π}{3}$C.$\frac{7π}{3}$D.$\frac{8π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知角α的终边在直线3x+4y=0上,求sinα+cosα+$\frac{4}{5}$tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知关于x的不等式ax2-x-a+1>0,若a∈R,求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某环境保护部门对某处的环境状况用“污染指数”来监测,据监测,该处的“污染指数”与附近污染源的强度成正比,且与距离成反比,比例系数分别为常数k1、k2(k1>0,k2>0),现已知相距36km的A、B两家化工厂(污染源)的污染强度分别为1和25,它们连线段上任意一点C处的污染指数y等于两化工厂对该处的“污染指数”之和,设AC=x(km).
(1)试将y表示为x的函数,并指出定义域;
(2)确定A、B连线段上何处的“污染指数”最小,并求出这个最小值.

查看答案和解析>>

同步练习册答案