精英家教网 > 高中数学 > 题目详情
6.一动圆与圆x2+y2=1外切,与圆x2+y2-6x-91=0内切,则动圆的圆心的轨迹是(  )
A.一个椭圆B.一条抛物线C.双曲线的一支D.一个圆

分析 由题意首先设出动圆的圆心与半径,然后结合几何关系和圆锥曲线的定义即可求得最终结果.

解答 解:设动圆的圆心为M,半径为R,则:
圆x2+y2=1的圆心F1(0,0),半径r1=1,
圆x2+y2-6x-91=0圆心F2(3,0),半径r2=10;
根据题意,得|MF1|=R+1,|MF2|=10-R;
∴|MF1|+|MF2|=(R+1)+(10-R)=11,
又|F1F2|=3<|MF1|+|MF2|;
∴点M的轨迹是椭圆,
即动圆的圆心的轨迹是一个椭圆.
故选:A.

点评 本题考查了圆与圆的位置关系,轨迹方程问题,圆锥曲线的定义等,重点考查学生对基础概念的理解和计算能力,属于中等题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某工厂2万元设计了某款式的服装,根据经验,每生产1百套该款式服装的成本为1万元,每生产x(百套)的销售额(单位:万元)P(x)=$\left\{\begin{array}{l}{-0.4{x}^{2}+4.2x-0.8,0<x≤5}\\{14.7-\frac{9}{x-3},x>5}\end{array}\right.$.
(1)若生产6百套此款服装,求该厂获得的利润;
(2)该厂至少生产多少套此款式服装才可以不亏本?
(3)试确定该厂生产多少套此款式服装可使利润最大,并求最大利润.(注:利润=销售额-成本,其中成本=设计费+生产成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=|2x-1|.
(Ⅰ)求不等式f(x)<|x-1|的解集;
(Ⅱ)若函数g(x)=f(x)+f(x-1)的最小值为a,且m+n=a(m>0,n>0),求$\frac{{m}^{2}+2}{m}$+$\frac{{n}^{2}+1}{n}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数y=3sin(x+$\frac{π}{5}$)的图象C.为了得到函数y=3sin(2x-$\frac{π}{5}$)的图象,只要把C上所有的点(  )
A.先向右平行移动$\frac{π}{5}$个单位长度,然后横坐标伸长到原来的2倍,纵坐标不变
B.先横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,然后向左平行移动$\frac{π}{5}$个单位长度
C.先向右平行移动$\frac{2π}{5}$个单位长度,然后横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变
D.先横坐标伸长到原来的2倍,纵坐标不变,然后向左平行移动$\frac{2π}{5}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.抛物线y=4x2的准线方程为(  )
A.x=-1B.x=1C.y=-$\frac{1}{16}$D.y=$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)的导函数为f′(x),对任意x∈R,都有xf′(x)<f(x)成立,则(  )
A.2f(2)<f(4)B.2f(2)=f(4)
C.2f(2)>f(4)D.2f(2)与f(4)的大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线y2=2px,p为方程x2-4x-12=0的根.
(Ⅰ)求抛物线的方程;
(Ⅱ)若抛物线与直线y=2x-5无公共点,试在抛物线上求一点,使这点到直线y=2x-5的距离最短.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$sinα=\frac{1}{3},α∈({\frac{π}{2},π})$,则cos(-α)=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知平面上的曲线l及点P,在l上任取一点Q,线段PQ长度的最小值称为点P到曲线l的距离,记作d(P,l).
(1)求点P(3,4)到曲线l:x2+y2=4的距离d(P,l);
(2)设曲线l:$\left\{\begin{array}{l}{{y}^{2}=1(-1<x<1)}\\{(x-1)^{2}+{y}^{2}=1(1≤x≤2)}\\{(x+1)^{2}+{y}^{2}=1(-2≤x≤-1)}\end{array}\right.$,求点集S={P|2<d(P,l)≤3}所表示图形的面积;
(3)设曲线l1:y=0(-1≤x≤1),曲线l2:x2+y2=1,求出到两条曲线l1,l2距离相等的点的集合Ω={P|d(P,l1)=d(P,l2)}.

查看答案和解析>>

同步练习册答案