精英家教网 > 高中数学 > 题目详情
设点P是抛物线y2=8x上一点,焦点是F,点A(3,2),使|PA|+|PF|有最小值时,则点P的坐标是
 
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:利用抛物线的定义,转化为A到准线的距离就是|PA|+|PF|的最小值,然后求出P点的坐标.
解答: 解:将x=3代入抛物线方程y2=8x,得y=±2
6
,∵2
6
>2,∴A在抛物线内部.
设抛物线上的点P到准线l:x=-2的距离为d,
由定义知|PA|+|PF|=|PA|+d,所以当PA⊥l时,|PA|+d最小,最小值为5,此时P点的纵坐标为2,
代入y2=8x,得x=
1
2
,所以P点的坐标为(
1
2
,2).
故答案为:(
1
2
,2).
点评:本题考查抛物线的定义和性质的应用,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

y=log3(x-1)的定义域为
 
值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(
3
,-1),
b
=(
1
2
3
2
),若存在不同时为零的实数k和t,使
x
=
a
+(t2-3)
b
y
=-k
a
+t
b
x
y

(1)试求函数关系式k=f(t);
(2)若t∈(0,+∞)时,不等式k≥
1
2
t2+
1
4
mt恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

从某高校3600名学生中随机抽取8人进行抽血化验,四种血型的人数如图所示.
(Ⅰ)试估计全校O型血的学生大约有多少人?
(Ⅱ)从这8人中任取2人,求血型不同的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=x被曲线2x2+y2=2截得的弦长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某车间有50名工人,要完成150件产品的生产任务,每件产品由3个A型零件和1个B型零件配套组成,每个工人每小时能加工5个A型零件或者3个B型零件,现在把这些工人分成两组同时工作(分组后人数不再进行调整),每组加工同一种型号的零件.设加工A型零件的工人数为x名(x∈N*).
(1)设完成A、B型零件加工所需的时间分别为f(x)、g(x)小时,写出f(x)与g(x)的解析式;
(2)当x取何值时,完成全部生产任务的时间最短?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{2n-1•an}的前n项和Sn=9-6n.
(1)求数列{an}的通项公式;
(2)设bn=n•(3-log2
|an|
3
),设数列{
1
bn
}的前n项和为Tn,求使Tn
m
6
恒成立的m的最小整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个扇形的圆心角为
π
3
弧度,它的圆心角所对的弦长为3,则这个扇形的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系O-xyz中,已知A(5,7,3),B(4,8,3-
2
),则直线AB与面yOz所成的角等于
 

查看答案和解析>>

同步练习册答案