精英家教网 > 高中数学 > 题目详情
17.一条直线和两条异面直线中的一条平行,则它和另一条的位置关系是(  )
A.异面B.平行C.相交D.相交或异面

分析 由空间中直线与直线的位置关系,结合已知中一条直线和两条平行直线中的一条是异面直线,根据直线与直线位置关系的几何特征,即可得到答案.

解答 解:∵一条直线和两条平行直线中的一条是异面直线,
∴它和另一条直线不可能平行,
故它和另一条直线的位置关系是相交或异面,
故选D,

点评 本题考查的知识点是空间中直线与直线之间的位置关系,其中熟练掌握空间中直线与直线位置关系的定义及几何特征是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.下列命题中:
①偶函数的图象一定与y轴相交;
②奇函数的图象一定过原点;
③若奇函数f(x)=a-$\frac{2}{{{2^x}+1}}$,则实数a=1;
④图象过原点的奇函数必是单调函数;
⑤函数y=2x-x2的零点个数为2;
⑥互为反函数的图象关于直线y=x对称.
上述命题中所有正确的命题序号是③⑥.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,某工厂要设计一个三角形原料,其中AB=$\sqrt{3}$AC.
(1)若BC=2,求△ABC的面积的最大值;
(2)若△ABC的面积为1,问∠BAC=θ为何值时BC取得最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系中xOy中,曲线E的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)写出曲线E的普通方程和极坐标方程;
(2)若直线l与曲线E相交于点A、B两点,且OA⊥OB,求证:$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=lnx-x2与g(x)=(x-2)2-$\frac{1}{2x-4}$-m的图象上存在关于(1,0)对称的点,则实数m的取值范围是(  )
A.(-∞,1-ln2)B.(-∞,1-ln2]C.(1-ln2,+∞)D.[1-ln2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设z是复数,则下列命题中的假命题是(  )
A.若z是纯虚数,则z2<0B.若z是虚数,则z2≥0
C.若z2≥0,则z是实数D.若z2<0,则z是虚数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=3-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位),且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=4sinθ.
(1)求圆C的直角坐标方程和直线l普通方程;
(2)设圆C与直线l交于点A,B,若点P的坐标为(3,0),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若数列{an}满足${a_1}=\frac{1}{2}$,${a_n}=1-\frac{1}{{{a_{n-1}}}}$(n≥2且a∈N),则a2016等于(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.四边形ABCD中,∠BAC=90°,BD+CD=2,则它的面积最大值等于$\frac{1+\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案