精英家教网 > 高中数学 > 题目详情
6.已知正项数列{an}中a1=1,且${a}_{n}^{2}$•an+1+(Sn-Sn-12-an•an+1=0,则an=$\frac{1}{n}$.

分析 由题意可得$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=1,继而得到数列{$\frac{1}{{a}_{n}}$}是以1为首项,以公差为1的等差数列,即可求出通项公式.

解答 解:∵${a}_{n}^{2}$•an+1-(Sn-Sn-12+an•an+1=0,
∴${a}_{n}^{2}$•an+1-an2+an•an+1=0,
∵正项数列{an},
∴an•an+1-an+an+1=0,
∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=1,
∵a1=1,
∴$\frac{1}{{a}_{1}}$=1,
∴数列{$\frac{1}{{a}_{n}}$}是以1为首项,以公差为1的等差数列,
∴$\frac{1}{{a}_{n}}$=1+(n-1)=n,
∴an=$\frac{1}{n}$
故答案为:$\frac{1}{n}$

点评 本题考查数列递推式,通项公式的关系,等差数列的定义的应用,考查计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.某高中准备租用甲、乙两种型号的客车安排900名学生去冰雪大世界游玩.甲、乙两种车辆的载客量分别为36人/辆和60人/辆,租金分别为400元/辆和600元/辆,学校要求租车总数不超过21辆,且乙型车不多于甲型车7辆,则学校所花租金最少为9200元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,直线AB垂直平面α于点B,直线l在平面α内,点C,D在l上,∠BCD=90°,∠CDB=45°,AB=80cm,CD=60cm.求点A到直线l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点($\frac{π}{8}$,$\sqrt{2}$)是函数f(x)=2(asinx+bcosx)•cosx-b图象的一个最大值点.
(I)求实数a、b的值;
(Ⅱ)若f(α)=$\frac{4\sqrt{2}}{5}$,-$\frac{3π}{8}$$<α<\frac{π}{8}$,求cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二次函数f(x)=3x2-2x,数列{an}的前n项和为Sn,点$(n,{S_n})\;(n∈{N^*})$均在函数y=f(x)的图象上.(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}=\frac{3}{{{a_n}{a_{n+1}}}},{T_n}$是数列{bn}的前n项和,求使得${T_n}<\frac{m}{2014}$对所有的n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}的前n项和为Sn,对任意的正整数n,都有${a}_{n+1}^{2}$=an•an+2恒成立,且a2=1,S2=$\frac{3}{2}$.
(I)求数列{an}的通项公式;
(Ⅱ)若数列{bn}对于任意的正整数n,均有b1an+b2an-1+b3an-2+…+bna1=3n-2n,记数列{bn}前n项和为Tn,如果Tn≥k对于实数k恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在数列{an}中.a1=2,an+1=2an-n+1,n∈N*
(1)求证:数列{an-n}是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=2sin(x+$\frac{π}{3}$),设a=f($\frac{π}{7}$),b=f($\frac{π}{6}$),c=f($\frac{π}{3}$),则a,b,c的大小关系是(  )
A.a<b<cB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=2sin(2x+$\frac{π}{6}$)的图象(  )
A.关于直线x=$\frac{π}{6}$对称B.关于直线x=-$\frac{π}{12}$对称
C.关于点($\frac{2π}{3}$,0)对称D.关于点(π,0)对称

查看答案和解析>>

同步练习册答案