分析 (Ⅰ)根据点(n,Sn)(n∈N*)均在函数y=f(x)的图象上,确定出Sn,由an=Sn-Sn-1确定出通项公式即可;
(Ⅱ)由第一问确定出的通项公式表示出bn,进而表示出Tn,代入已知不等式确定出最小正整数m的值即可.
解答 解:(Ⅰ)∵f(x)=3x2-2x,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上,
∴Sn=3n2-2n,
当n≥2时,an=Sn-Sn-1=3n2-2n-[3(n-1)2-2(n-)]=6n-5,
当n=1时a1=1也适合,
∴an=6n-5(n∈N*);
(Ⅱ)由(Ⅰ)知bn=$\frac{3}{{a}_{n}{a}_{n+1}}$=$\frac{3}{(6n-5)[6(n+1)-5]}$=$\frac{1}{2}$($\frac{1}{6n-5}$-$\frac{1}{6n+1}$),
∴Tn=$\frac{1}{2}$[(1-$\frac{1}{7}$)+($\frac{1}{7}$-$\frac{1}{13}$)+…+($\frac{1}{6n-5}$-$\frac{1}{6n+1}$)]=$\frac{1}{2}$(1-$\frac{1}{6n+1}$),
要使$\frac{1}{2}$(1-$\frac{1}{6n+1}$)<$\frac{m}{2014}$(n∈N*)成立,m必须且仅需满足$\frac{1}{2}$≤$\frac{m}{2014}$,即m≥1007,
则满足要求的最小正整数m为1007.
点评 此题考查了数列的递推式,二次函数的性质,熟练掌握运算法则及性质是解本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①④③② | B. | ①④②③ | C. | ④①②③ | D. | ③④②① |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{13}$ | B. | 4 | C. | 3 | D. | $\sqrt{15}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | sin(arcsin$\frac{π}{3}$)=$\frac{π}{3}$ | B. | sin(arcsin$\frac{3}{π}$)=$\frac{3}{π}$ | ||
| C. | arccos(-x)=arccosx | D. | arctan(tan$\frac{2π}{3}$)=$\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1601 | B. | -1801 | C. | -2001 | D. | -2201 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com