分析 (1)求出函数的导数,计算f(1),f′(1)的值,求出切线方程即可;
(2)求出函数的导数,解关于导函数的不等式,通过讨论a的范围,求出函数的单调区间即可.
解答 解:(1)∵$f(x)=-\frac{x^2}{2}+({a-1})x+({2-a})lnx+\frac{3}{2}({a<3})$,
∴$f(1)=a,f'(x)=-x+a-1+\frac{2-a}{x}$,f'(1)=0,
∴y=f(x)在点(1,f(1))处的切线方程为y=a;
(2)∵$f'(x)=-x+a-1+\frac{2-a}{x}=\frac{{-{x^2}+({a-1})x+2-a}}{x}({x>0})$,
∴f'(x)>0?-x2+(a-1)x+2-a>0,
f'(x)<0?-x2+(a-1)x+2-a<0,
令g(x)=-x2+(a-1)x+2-a=0,解得x1=1,x2=a-2,
由已知,a<3,
①当2<a<3时,0<x2<x1,g(x)>0的解是a-2<x<1,
g(x)<0的解是0<x<a-2或x>1,
∴f(x)的单调增区间是(a-2,1),单调减区间是(0,a-2),(1,+∞);
②当a≤2时,x2≤0,g(x)>0的解是0<x<1,g(x)<0的解是x>1,
∴f(x)的单调增区间是(0,1),单调减区间是(1,+∞),
综上所述,当2<a<3时,f(x)的单调增区间是(a-2,1),
单调减区间是(0,a-2),(1,+∞);
当a≤2时,f(x)的单调增区间是(0,1),单调减区间是(1,+∞).
点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | .$\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | .$\frac{{2\sqrt{2}}}{3}$ | D. | .$-\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 销售时间x(月) | 1 | 2 | 3 | 4 | 5 |
| 销售额y(万元) | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | $\sqrt{5}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x+y-4=0 | B. | x-2y+3=0 | C. | x+y-3=0 | D. | x-y+1=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com