精英家教网 > 高中数学 > 题目详情
4.计算:|$\frac{{{(1-i)}^{10}(3-4i)}^{4}}{{(-\sqrt{3}+i)}^{8}}$|.

分析 根据复数模的混合运算即可求出.

解答 解:|$\frac{{{(1-i)}^{10}(3-4i)}^{4}}{{(-\sqrt{3}+i)}^{8}}$|=|$\frac{|1-i{|}^{10}||3-4i{|}^{4}}{|-\sqrt{3}+i{|}^{8}}$=$\frac{{\sqrt{2}}^{10}•{5}^{4}}{{2}^{8}}$=$\frac{625}{8}$

点评 本题考查了复数的混合运算和复数的模的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知数列{an}中,a1=-2,a2=3,且$\frac{{a}_{n+2}-3{a}_{n+1}}{{a}_{n+1}-3{a}_{n}}$=3,则数列{$\frac{{a}_{n}}{3n-5}$}的前n项和Sn=$\frac{1}{2}$(3n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=|x-1|,则${∫}_{-2}^{2}$f(x)dx的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对于集合{θ1,θ2,…,θ3}(n∈N*,n>2)及常数θ0,称$\frac{2}{n}[co{s}^{2}({θ}_{1}-{θ}_{0})+co{s}^{2}({θ}_{2}-{θ}_{0})+…+co{s}^{2}({θ}_{n}-{θ}_{0})]$为集合{θ1,θ2,…,θ3}相对于常数θ0的“余弦方差”,那么集合{$\frac{π}{3}$,$\frac{2π}{3}$,π}相对于常数α的“余弦方差”的值为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足a1=1,an+1=-$\frac{1}{2}$an+1,试归纳出这个数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(m,2).$\overrightarrow{a}$⊥($\overrightarrow{a}$十2$\overrightarrow{b}$).$\overrightarrow{c}$与$\overrightarrow{b}$的夹角为$\frac{3π}{4}$,$\overrightarrow{b}•\overrightarrow{c}$=-13.
(1)求实数m的值;
(2)求|$\overrightarrow{c}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若椭圆$\frac{x^2}{36}+\frac{y^2}{9}=1$的弦被点(4,2)平分,求这条弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$\left\{{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}}\right.$,若目标函数z=4ax+3by(a>0,b>0)最大值为12,则$\frac{1}{a}+\frac{1}{b}$的最小值为(  )
A.1B.2C.4D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个长方体底面为正方形且边长为4,高为h,若这个长方体能装下8个半径为1的小球和一个半径为2的大球,则h的最小值为(  )
A.8B.2+2$\sqrt{7}$C.2+2$\sqrt{5}$D.6

查看答案和解析>>

同步练习册答案