精英家教网 > 高中数学 > 题目详情
13.实数x,y满足不等式组:$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$,若z=x2+y2,则z的最大值是4.

分析 由约束条件作出可行域,再由z=x2+y2的几何意义,即可行域内动点到原点距离的平方求解.

解答 解:由约束条件$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$作出可行域如图,

z=x2+y2的几何意义为可行域内动点到原点距离的平方,
∴当动点(x,y)为A(0,2)时,z有最大值为4.
故答案为:4.

点评 本题考查简单的线性规划,考查数形结合的解题思想方法和数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知射线OP:y=$\frac{4}{3}$x(x≥0)和矩形ABCD,AB=16,AD=9,点A、B分别在射线OP和x轴非负半轴上,则线段OD长度的最大值为(  )
A.$\sqrt{337}$B.27C.$\sqrt{689}$D.29

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={1,2,3},$B=\left\{{x|\frac{2-x}{x}≥0}\right\}$,则A∩B=(  )
A.{0,1,2}B.{1,2}C.{2,3}D.{0,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为建设美丽乡村,政府欲将一块长12百米,宽5百米的矩形空地ABCD建成生态休闲园,园区内有一景观湖EFG(图中阴影部分),以AB所在直线为x轴,AB的垂直平分线为y轴,建立平面直角坐标系xOy(如图所示).景观湖的边界线符合函数y=x+$\frac{1}{x}$(x>0)模型,园区服务中心P在x轴正半轴上,PO=$\frac{4}{3}$百米.
(1)若在点O和景观湖边界曲线上一点M之间修建一条休闲长廊OM,求OM的最短长度;
(2)若在线段DE上设置一园区出口Q,试确定Q的位置,使通道PQ最短.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设{an}为各项均为正数的等比数列,且a2=$\frac{1}{3}$,a6=$\frac{1}{243}$.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求和:T2n=a1-2a2+3a3-…-2na2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义$\frac{n}{{P}_{1}+{P}_{2}+…+{P}_{n}}$为n个正数P1,P2…Pn的“均倒数”,若已知正整数数列{an}的前n项的“均倒数”为$\frac{1}{2n+1}$,又bn=$\frac{{a}_{n}+1}{4}$,则$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{10}{b}_{11}}$=(  )
A.$\frac{1}{11}$B.$\frac{1}{12}$C.$\frac{10}{11}$D.$\frac{11}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.2017年两会继续关注了乡村教师的问题,随着城乡发展失衡,乡村教师待遇得不到保障,流失现象严重,教师短缺会严重影响乡村孩子的教育问题,为此,某市今年要为某所乡村中学招聘储备未来三年的教师,现在每招聘一名教师需要2万元,若三年后教师严重短缺时再招聘,由于各种因素,则每招聘一名教师需要5万元,已知现在该乡村中学无多余教师,为决策应招聘多少乡村教师搜集并整理了该市100所乡村中学在过去三年内的教师流失数,得到右面的柱状图:记x表示一所乡村中学在过去三年内流失的教师数,y表示一所乡村中学未来四年内在招聘教师上所需的费用(单位:万元),n表示今年为该乡村中学招聘的教师数,为保障乡村孩子教育不受影响,若未来三年内教师有短缺,则第四年马上招聘
(Ⅰ)若n=19,求y与x的函数解析式;
(Ⅱ)若要求“流失的教师数不大于n”的频率不小于0.5,求n的最小值;
(Ⅲ)假设今年该市为这100所乡村中学的每一所都招聘了19个教师或20个教师,分别计算该市未来四年内为这100所乡村中学招聘教师所需费用的平均数,以此作为决策依据,今年该乡村中学应招聘19名还是20名教师?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过点M(m,0)(m>0)作直线l,与抛物线y2=4x有两交点A,B,F是抛物线的焦点,若$\overrightarrow{FA}•\overrightarrow{FB}<0$,则m的取值范围是(3-2$\sqrt{2}$,3+2$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)={2^x}+\frac{1}{{{2^{x+2}}}}$,则f(x)取最小值时对应的x的值为-1.

查看答案和解析>>

同步练习册答案