精英家教网 > 高中数学 > 题目详情
11.已知函数$f(x)=x-\frac{a}{e^x}$.
(1)当a=-1时,求函数f(x)的单调区间;
(2)若函数f(x)在[0,1]上的最小值为$\frac{3}{2}$,求实数a的值.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)求出函数的导数,通过讨论a的范围,求出函数的单调区间,从而求出函数的最小值,求出a的值即可.

解答 解:(1)f(x)的定义域是R,且f′(x)=1+$\frac{a}{{e}^{x}}$=$\frac{{e}^{x}+a}{{e}^{x}}$,
a=-1时,f′(x)=$\frac{{e}^{x}-1}{{e}^{x}}$,
由f′(x)>0,得x∈(0,+∞),由f′(x)<0,得x∈(-∞,0),
∴f(x)在(-∞,0)递减,在(0,+∞)递增;
(2)由(1)得f′(x)=$\frac{{e}^{x}+a}{{e}^{x}}$,
①若a≥-1,则ex+a≥0,即f′(x)≥0在[0,1]上恒成立,
f(x)在[0,1]上是增函数,
∴f(x)min=f(0)=-a=$\frac{3}{2}$,
∴a=-$\frac{3}{2}$(舍);
②若a≤-e,则 ex+a≤0,即f′(x)≤0在(0,1]恒成立,
f(x)在[0,1]递减,
∴f(x)min=f(1)=1-$\frac{a}{e}$=$\frac{3}{2}$,
∴a=-$\frac{e}{2}$(舍);
③若-e<a<-1,当0<x<ln(-a)时,f′(x)<0,
∴f(x)在(0,ln(-a))递减,
当ln(-a)<x<1时,f′(x)>0,
∴f(x)在(ln(-a),1)递增;
∴f(x)min=f(ln(-a))=ln(-a)+1=$\frac{3}{2}$,
∴a=-$\sqrt{e}$,
综上所述:a=-$\sqrt{e}$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的一动点.
(1)求证:PO⊥平面ABCD;
(2)求直线CB与平面PDC所成角的正弦值;
(3)当$\overrightarrow{PE}=λ\overrightarrow{PA}$时,二面角E-BD-A的余弦值为$\frac{{\sqrt{5}}}{5}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.曲线f(x)=ex在点(1,f(1))处的切线与该曲线及y轴围成的封闭图形的面积为(  )
A.$\frac{e}{2}$B.eC.e-1D.$\frac{e}{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知a≥$\frac{4}{3}$${∫}_{0}^{\frac{π}{6}}$cosθdθ,则曲线f(x)=ax+$\frac{2}{a}$ln(ax-1)在点(2,f(2))处切线的斜率的最小值为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和${S_n}={n^2}+kn$,其中k为常数,a6=13.
(1)求k的值及数列{an}的通项公式;
(2)若${b_n}=\frac{2}{{n({a_n}+1)}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设变量x,y满足$\left\{{\begin{array}{l}{x-y+2≥0}\\{x+2y-2≥0}\\{3x+y-9≤0}\end{array}}\right.$.若z=a2x+y(a>0)的最大值为 4.则 a=$\frac{\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p:若$?x∈(-\frac{π}{2},0)$,tanx<0,命题q:?x0∈(0,+∞),${2^{x_0}}=\frac{1}{2}$,则下列命题为真命题的是
(  )
A.p∧qB.(¬p)∧(?q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.调查表明:甲种农作物的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为x,y,z,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标ω=x+y+z的值评定这种农作物的长势等级,若ω≥4,则长势为一级;若2≤ω≤3,则长势为二级;若0≤ω≤1,则长势为三级,为了了解目前这种农作物长势情况,研究人员随机抽取10块种植地,得到如表中结果:
种植地编号A1A2A3A4A5
(x,y,z)(1,1,2)(2,1,1)(2,2,2)(0,0,1)(1,2,1)
种植地编号A6A7A8A9A10
(x,y,z)(1,1,2)(1,1,1)(1,2,2)(1,2,1)(1,1,1)
(Ⅰ)在这10块该农作物的种植地中任取两块地,求这两块地的空气湿度的指标z相同的概率;
(Ⅱ)从长势等级是一级的种植地中任取一块地,其综合指标为A,从长势等级不是一级的种植地中任取一块地,其综合指标为B,记随机变量X=A-B,求X的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足$\left\{\begin{array}{l}{{a}_{1}=1}\\{{a}_{n+1}={a}_{n}+p•{2}^{n}-nq(n∈{N}^{*})}\end{array}\right.$其中p,q∈R.
(1)若数列前四项a1,a2,a3,a4依次成等差数列,求p,q的值;
(2)若q=0,且数列{an}为等比数列,求p的值;
(3)若p=1,且a5是数列{an}的最小项,求q的取值范围.

查看答案和解析>>

同步练习册答案