精英家教网 > 高中数学 > 题目详情
16.直线xcosα-y+sinα=0,则该直线倾斜角的取值范围是(  )
A.[-$\frac{π}{4}$,$\frac{π}{4}$]B.[0,$\frac{π}{4}$]∪($\frac{π}{2}$,$\frac{3π}{4}$]C.[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π]D.[$\frac{π}{4}$,$\frac{3π}{4}$]

分析 由题意可得直线倾斜角的正切值的范围,结合正切函数的单调性求得答案.

解答 解:设直线xcosα-y+sinα=0的倾斜角为θ(0≤θ<π),
则tanθ=cosα∈[-1,1],
∴θ∈[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π).
故选:C.

点评 本题考查直线的倾斜角,考查了直线倾斜角和斜率的关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图所示的几何体中,ABC-A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.
(Ⅰ)若AA1=AC,求证:AC1⊥平面A1B1CD;
(Ⅱ)若CD=2,AA1=λAC,二面角C-A1D-C1的余弦值为$\frac{\sqrt{2}}{4}$,求三棱锥C1-A1CD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.椭圆mx2+ny2=1(m>0,n>0.m≠n)与直线x+y=1相交于A,B两点,若|AB|=2$\sqrt{2}$,AB的中点与椭圆中心线的斜率为$\frac{\sqrt{2}}{2}$,则椭圆方程为(  )
A.3x2$+\frac{\sqrt{2}}{3}{y}^{2}$=1B.$\frac{{x}^{2}}{3}$$+\frac{\sqrt{2}}{3}$y2=1C.$\frac{{x}^{2}}{3}$$+\sqrt{2}$y2=1D.x2$+\sqrt{2}$y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设P是一个数集,且至少含有两个数,若对任意a,b∈P,都有a+b,a-b,ab,$\frac{a}{b}$∈P(除数b≠0),则称P是一个数域.例如有理数集Q是数域.求证:
(1)数域必含有0与1两个数;
(2)数域必为无限集;
(3)数集A={x|x=a+b•$\sqrt{2}$,a,b∈Q}是数域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$\overrightarrow{a}$+$\overrightarrow{b}$=2$\overrightarrow{e}$1-8$\overrightarrow{e}$2,$\overrightarrow{a}$-$\overrightarrow{b}$=-8$\overrightarrow{e}$1+16$\overrightarrow{e}$2,其中|$\overrightarrow{e}$1|=|$\overrightarrow{e}$2|=1,$\overrightarrow{e}$1⊥$\overrightarrow{e}$2,则$\overrightarrow{a}$•$\overrightarrow{b}$=-63.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{2}$sin2x-$\sqrt{3}$cos2x,求f(x)的最小正周期和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2sin(2x+$\frac{π}{6}$)+a+1,且当x$∈[0,\frac{π}{2}]$时,f(x)的最小值为2.
(1)求a的值,并求(x)的单调递增区间;
(2)先将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的$\frac{1}{2}$,再将所得的图象向右平移$\frac{π}{12}$个单位,得到函数y=g(x)的图象,求方程g(x)=4在区间[0,$\frac{π}{2}$]上所有根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.等比数列4,6,9…的通项公式an=4×($\frac{3}{2}$)n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设实数x,y满足$\left\{\begin{array}{l}{y≤2x+2}\\{x+y-3≥0}\\{x≤2}\end{array}\right.$,则$\frac{y}{x}$的取值范围是(  )
A.[$\frac{1}{2}$,8]B.[$\frac{1}{2}$,3]C.[3,8]D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

同步练习册答案