精英家教网 > 高中数学 > 题目详情

(2014•黄冈模拟)已在点C在圆O的直径BE的延长线上,直线CA与圆O相切于点A,∠ACB的平分线分别交AB、AE于点D、F,则∠ADF= .

 

 

45°

【解析】

试题分析:因为AC为圆O的切线,由弦切角定理,则∠B=∠EAC.又CD平分∠ACB,则∠ACD=∠BCD,两式相加,∠B+∠BCD=∠EAC+∠ACD,根据三角形外角定理,∠ADF=∠AFD,又∠BAE=90°,,△ADF是等腰直角三角形,所以∠ADF=∠AFD=45°.

【解析】
因为AC为圆O的切线,由弦切角定理,则∠B=∠EAC.

又CD平分∠ACB,则∠ACD=∠BCD.

所以∠B+∠BCD=∠EAC+∠ACD.

根据三角形外角定理,∠ADF=∠AFD,

因为BE是圆O的直径,则∠BAE=90°,△ADF是等腰直角三角形,

所以∠ADF=∠AFD=45°.

故答案为:45°

练习册系列答案
相关习题

科目:高中数学 来源:[同步]2014年新人教A版选修4-2 1.2二阶矩阵与平面向量的乘法(解析版) 题型:选择题

定义运算,如,已知α+β=π,,则=( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-1 3.3平面与圆锥面的截线练习卷(解析版) 题型:填空题

(2007•茂名二模)已知圆柱半径是2,则是一个与圆柱的轴成45°角的平面截圆柱面所得截痕曲线的离心率是 .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-1 3.1平行射影练习卷(解析版) 题型:填空题

给出下列四个命题:

①设x1,x2∈R,则x1>1且x2>1的充要条件是x1+x2>2且x1x2>1;

②任意的锐角三角形ABC中,有sinA>cosB成立;

③平面上n个圆最多将平面分成2n2﹣4n+4个部分;

④空间中直角在一个平面上的正投影可以是钝角.

其中真命题的序号是 (要求写出所有真命题的序号).

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-1 2.4弦切角的性质练习卷(解析版) 题型:填空题

(2014•天津一模)如图所示,已知PA与⊙O相切,A为切点,过点P的割线交圆于B、C两点,弦CD∥AP,AD、BC相交于点E,F为CE上一点,且∠EDF=∠C,若CE:BE=3:2,DE=3,EF=2.则PA= .

 

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-1 2.4弦切角的性质练习卷(解析版) 题型:选择题

如图,经过⊙O上的点 A的切线和弦 BC的延长线相交于点 P,若∠CAP=40°,∠ACP=100°,则

∠BAC所对的弧的度数为( )

A.40° B.100° C.120° D.30°

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-1 2.4弦切角的性质练习卷(解析版) 题型:选择题

如图所示,圆O的直径AB=6,C为圆周上一点,BC=3过C作圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC=( )

A.15° B.30° C.45° D.60°

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-1 2.1圆周角定理练习卷(解析版) 题型:填空题

(2013•惠州二模)(几何证明选讲选做题)

如图所示,AB是圆O的直径,,AB=10,BD=8,则cos∠BCE= .

 

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修1-2 3.2数学证明练习卷(解析版) 题型:选择题

(2014•天津一模)定义一种新运算:a?b=,已知函数f(x)=(1+)?3log2(x+1),若方程f(x)﹣k=0恰有两个不相等的实根,则实数k的取值范围为( )

A.(﹣∞,3)

B.(1,3)

C.(﹣∞,﹣3)∪(1,3)

D.(﹣∞,﹣3)∪(0,3)

 

查看答案和解析>>

同步练习册答案