精英家教网 > 高中数学 > 题目详情
12.三次函数f(x)=x3-3x+1的零点个数为(  )
A.0B.1C.2D.3

分析 求导f′(x)=3x2-3=3(x+1)(x-1),从而判断函数的单调性,从而结合零点的判定定理求解即可.

解答 解:∵f(x)=x3-3x+1,
∴f′(x)=3x2-3=3(x+1)(x-1),
∴f(x)在(-∞,-1),(1,+∞)上是增函数,在(-1,1)上是减函数;
而f(-1)=-1+3+1=3>0,f(1)=1-3+1=-1<0,
故f(x)在(-∞,-1),(1,+∞),(-1,1)上各有一个零点,
故三次函数f(x)=x3-3x+1的零点个数为3,
故选:D.

点评 本题考查了导数的综合应用及函数的零点的判定定理的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知$C_n^0$+$2C_n^1$+${2^2}C_n^2$+…+${2^n}C_n^n$=729,则$C_n^1$++${C}_{n}^{2}$+$C_n^3$+…+${C}_{n}^{n}$的值等于63.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知两定圆O1:(x-1)2+(y-1)2=1,圆O2:(x+5)2+(y+3)2=4,动圆P恒将两定圆的周长平分.试求动圆圆心P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若sin2xsin3x=cos2xcos3x(0°≤x≤90°),则x=18°或90°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.(1)在平面直角坐标系中,求曲线$C:\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{2}}}{2}t}\\{y=1+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数)的普通方程.
(2)在极坐标系中,求点(2,$\frac{π}{6}$)到直线ρsinθ=2的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=Asin(ωx+φ)(其中$A>0,ω>0,0<φ<\frac{π}{2}$)的最小正周期为π,且图象上的一个最高点为$M(\frac{π}{6},3)$.
(1)求f(x)的解析式;
(2)若$x∈[{0,\frac{π}{4}}]$,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.用二分法研究函数f(x)=x5+8x3-1的零点时,第一次经过计算f(0)<0,f(0.5)>0,则其中一个零点所在的区间和第二次应计算的函数值分别为(  )
A.(0,0.5)f(0.125)B.(0.5,1)f(0.25)C.(0.5,1)f(0.75)D.(0,0.5)f(0.25)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=|x|-1,关于x的方程f2(x)-|f(x)|+k=0,则下列四个结论错误的是(  )
A.存在实数k,使方程恰有2个不同的实根
B.存在实数k,使方程恰有3个不同的实根
C.存在实数k,使方程恰有5个不同的实根
D.存在实数k,使方程恰有8个不同的实根

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用秦九韶算法求多项式f(x)=2x6-x2+2在x=2015时的值,需要进行乘法运算和加减法次数分别是(  )
A.6,2B.5,3C.4,2D.8,2

查看答案和解析>>

同步练习册答案