精英家教网 > 高中数学 > 题目详情
13.已知定义在R上的奇函数f(x),满足f(x-2)=-f(x),且当x∈[0,1]时,f(x)=x2+x+sinx,若方程f(x)=m(m>0)在区间[-4,4]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4的值为(  )
A.2B.-2C.4D.-4

分析 根据函数的条件,判断函数的周期,利用函数的奇偶性和周期性即可得到结论.

解答 解:∵f(x-2)=-f(x),
∴f(x-4)=-f(x-2)=f(x),
即函数的周期是4,
且f(x-2)=-f(x)=f(-x),
则函数的对称轴为:x=-1,f(x)是奇函数,
所以x=1也是对称轴,x∈[0,1]时,f(x)=x2+x+sinx,
函数是增函数,
作出函数f(x)的简图,
若方程f(x)=m(m>0)在区间[-4,4]上
有四个不同的根x1,x2,x3,x4
则四个根分别关于x=1和x=3对称,
不妨设x1<x2<x3<x4
则x1+x2=-6,x3+x4=2,
则x1+x2+x3+x4=-6+2=-4,
故选:D.

点评 本题主要考查方程根的应用,根据条件结合函数的周期性和奇偶性,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.下列四个推理中,属于类比推理的是(  )
A.因为铜、铁、铝、金、银等金属能导电,所有一切金属都能导电
B.一切奇数都不能被2整除,(250+1)是奇数,所以(250+1)不能被2整除
C.在数列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$可以计算出a2=$\frac{1}{2}$,a3=$\frac{1}{3}$,a4=$\frac{1}{4}$,所以推理出an=$\frac{1}{n}$
D.若双曲线的焦距是实轴长的2倍,则此双曲线的离心率为2,类似的,若椭圆的焦距是长轴长的一半,则此椭圆的离心率为$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将函数f(x)=sin($\frac{1}{5}$x+$\frac{13}{6}$π)的图象向右平移$\frac{10}{3}$π个单位长度,得到函数g(x)的图象,则下列结论错误的是(  )
A.函数g(x)的最小正周期为10πB.函数g(x)是偶函数
C.函数g(x)的图象关于直线x=$\frac{π}{4}$对称D.函数g(x)在[π,2π]上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=$\frac{3}{5}$c,则tan(A-B)的最大值为(  )
A.$\frac{3}{5}$B.$\frac{1}{3}$C.$\frac{3}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为了调查某生产线上质量监督员甲对产品质量好坏有无影响,现统计数据如下:质量监督员甲在生产现场时,990件产品中合格品有982件,次品有8件;甲不在生产现场时,510件产品中合格品有493件,次品有17件.试分别用列联表、独立性检验的方法分析监督员甲是否在生产现场对产品质量好坏有无影响?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx+a,g(x)=$\frac{b}{x}$-x(a,b∈R).
(Ⅰ)若曲线y=f(x)与曲线y=g(x)在点(1,f(1))处的切线方程相同,求实数a,b的值;
(Ⅱ)若f(x)≥g(x)恒成立,求证:当a≤-2时,b≤-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,AH⊥BC于H,点H满足$\overrightarrow{BH}$=2$\overrightarrow{HC}$,若|$\overrightarrow{BC}$|=3,则$\overrightarrow{BH}$•$\overrightarrow{BA}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设数列{an}满足a1=1,an=2an+1,设bn=log2an,则数列{bn}的前n项之和是(  )
A.$\frac{n(n-1)}{2}$B.$\frac{n(1-n)}{2}$C.n-1D.$\frac{n(n+1)}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设集合U={1,2,…,100},T⊆U.对数列{an}(n∈N*),规定:
①若T=∅,则ST=0;
②若T={n1,n2,…,nk},则ST=a${\;}_{{n}_{1}}$+a${\;}_{{n}_{2}}$+…+a${\;}_{{n}_{k}}$.
例如:当an=2n,T={1,3,5}时,ST=a1+a3+a5=2+6+10=18.
已知等比数列{an}(n∈N*),a1=1,且当T={2,3}时,ST=12,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案