精英家教网 > 高中数学 > 题目详情
2.设数列{an}满足a1=1,an=2an+1,设bn=log2an,则数列{bn}的前n项之和是(  )
A.$\frac{n(n-1)}{2}$B.$\frac{n(1-n)}{2}$C.n-1D.$\frac{n(n+1)}{2}$

分析 由已知数列递推式可得数列{an}是以1为首项,以$\frac{1}{2}$为公比的等比数列,求其通项公式后代入bn=log2an,再由等差数列的前n项和得答案.

解答 解:由an=2an+1,得$\frac{{a}_{n+1}}{{a}_{n}}=\frac{1}{2}$,
又a1=1,
∴数列{an}是以1为首项,以$\frac{1}{2}$为公比的等比数列,
则${a}_{n}=(\frac{1}{2})^{n-1}$.
∴bn=log2an=$lo{g}_{2}(\frac{1}{2})^{n-1}=1-n$.
∴数列{bn}的前n项之和是Sn=(1-1)+(1-2)+(1-3)+…+(1-n)
=n-(1+2+3+…+n)=n-$\frac{n(n+1)}{2}$=$\frac{n(1-n)}{2}$.
故选:B.

点评 本题考查等比数列的通项公式,考查了对数的运算性质,训练了等差数列前n项和的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$=(cos20°,sin20°),$\overrightarrow{b}$=(sin10°,cos10°).若t为实数,且$\overrightarrow{u}$=$\overrightarrow{a}$+t$\overrightarrow{b}$,则|$\overrightarrow{u}$|的最小值为(  )
A.$\sqrt{2}$B.1C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的奇函数f(x),满足f(x-2)=-f(x),且当x∈[0,1]时,f(x)=x2+x+sinx,若方程f(x)=m(m>0)在区间[-4,4]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4的值为(  )
A.2B.-2C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某城市有甲、乙、丙三个旅游景点,一位游客游览这三个景点的概率分别是0.4、0.5、0.6,且游客是否游览哪个景点互不影响,用ξ表示该游客离开该城市时游览的景点数与没有游览的景点数之差的绝对值.
(1)求ξ的分布列及期望;
(2)记“f(x)=2ξx+4在[-3,-1]上存在x,使f(x)=0”为事件A,求事件A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|x2+2x-15<0},B={x|x>1},则A∪B等于(  )
A.{x|x>-5}B.{x|1<x<2}C.{x|x>1}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=(x-x3)e|x|的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$cos(α-\frac{π}{6})+sinα=\frac{{4\sqrt{3}}}{5}$,则$sin(α+\frac{7π}{6})$的值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{4}{5}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.△ABC的三内角A、B、C满足sin2A+sin2B=2sin2C,那么cosC的最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设抛物线y=$\frac{1}{2}$x2的焦点为F,准线为l,过点F作一直线与抛物线交于A,B两点,再分别过点A,B作抛物线的切线,这两条切线的交点记为P.
(1)证明:直线PA与PB相互垂直,且点P在准线l上;
(2)是否存在常数λ,使等式$\overrightarrow{FA}$•$\overrightarrow{FB}$=λ$\overrightarrow{FP}$2恒成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案