分析 假设存在过点P(1,3)作一条直线l,P点刚好是线段AB的中点.设直线l:x=1或y-3=k(x-1),代入双曲线方程,运用韦达定理和中点坐标公式,求得k,再检验判别式是否大于0,即可判断.
解答 解:假设存在过点P(1,3)作一条直线l,
P点刚好是线段AB的中点.
设直线l:x=1或y-3=k(x-1),
当直线为x=1时,代入双曲线方程,方程无解,不成立;
当直线为y=kx+3-k,代入双曲线方程,可得2x2-(kx+3-k)2=8,
即有(2-k2)x2-2k(3-k)x-(3-k)2-8=0,
设A(x1,y1),B(x2,y2),
则x1+x2=$\frac{2k(3-k)}{2-{k}^{2}}$,
由中点坐标公式可得$\frac{k(3-k)}{2-{k}^{2}}$=1,
解得k=$\frac{2}{3}$.
判别式为4k2(3-k)2+4(2-k2)[8+(3-k)2]
=4×$\frac{4}{9}$×$\frac{121}{9}$+4×$\frac{14}{9}$×(8+$\frac{49}{9}$)>0,
故存在这样的直线l,且为直线l:y=$\frac{2}{3}$x+$\frac{7}{3}$.
点评 本题考查直线和双曲线方程联立,运用韦达定理,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{6}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com