精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=aln(x+1)-x2,任取x1,x2∈(0,1)且x1≠x2,不等式$\frac{{f({x_1}+1)-f({x_2}+1)}}{{{x_1}-{x_2}}}$>1恒成立,则实数a的取值范围为a≥15.

分析 利用导数判断函数的单调性,求出函数的定义域,利用函数的导数通过恒成立,转化求解即可.

解答 解:因为$\frac{{f({x_1}+1)-f({x_2}+1)}}{{{x_1}-{x_2}}}$表示点(x1+1,f(x1+1))与点(x2+1,f(x2+1))连线的斜率,
因为x1,x2∈(0,1)且x1≠x2,不等式$\frac{{f({x_1}+1)-f({x_2}+1)}}{{{x_1}-{x_2}}}>1$恒成立,
所以函数图象在区间(1,2)内任意两点连线的斜率大于1,
即函数的导数大于1在(1,2)内恒成立,由函数的定义域知,x>-1,
所以f'(x)=$\frac{a}{x+1}-2x>1$在(1,2)内恒成立,即a>2x2+3x+1在(1,2)内恒成立,
即a大于或等于2x2+3x+1在[1,2]上的最大值,
由二次函数的性质知,y=2x2+3x+1在[1,2]上是单调增函数,
故x=2时,y=2x2+3x+1在[1,2]上取最大值为15,故a>15.
故答案为:a≥15.

点评 本题考查函数的导数的应用,函数的单调性以及函数的最值的求法,二次函数的性质的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知直线$l:ρsin(θ-\frac{π}{4})=4$和圆$C:ρ=2k•cos(θ+\frac{π}{4})(k≠0)$,直线上的点到圆C上的点的最小距离等于2
(1)求直线L的直角坐标方程;
(2)求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,三棱锥的四个顶点P、A、B、C在同一个球面上,顶点P在平面ABC内的射影是H,若球心在直线PH上,则点H一定是△ABC的(  )
A.重心B.垂心C.内心D.外心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示,已知点G是△ABC的重心,过点G作直线与AB,AC两边分别交于M,N两点,且$\overrightarrow{AM}$=x$\overrightarrow{AB}$,$\overrightarrow{AN}$=y$\overrightarrow{AC}$,则x+y的最小值为(  )
A.2B.$\frac{1}{3}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F(1,0),且点$P(1,\frac{3}{2})$在椭圆C上,O为坐标原点.
(1)求椭圆C的标准方程;
(2)过椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{{{b^2}-\frac{5}{3}}}$=1上异于其顶点的任一点P,作圆O:x2+y2=$\frac{4}{3}$的两条切线,切点分别为M,N(M,N不在坐标轴上),若直线MN在x轴、y轴上的截距分别为m、n,证明:$\frac{1}{{3{m^2}}}+\frac{1}{n^2}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=Asin($\frac{π}{2}$x-$\frac{π}{2}$),g(x)=k(x-3).已知当A=1时,函数h(x)=f(x)-g(x)所有零点和为9.则当A=2时,函数h(x)=f(x)-g(x)所有零点和为(  )
A.15B.12C.9D.与k的取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和Sn=-an-${(\frac{1}{2})^{n-1}}$+2(n∈N*).
(1)求数列{an}的通项公式;
(2)设数列{$\frac{n+1}{n}$an}的前n项和为Tn,证明:n∈N*,且n≥3时,Tn>$\frac{5n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.向如图所示的矩形区域内随机投100个点,阴影面积为以下程序框图中的输出的s,当输入的n=10000时,请估算落在阴影区域内的点的个数 (结果四舍五入)为(  )
A.60B.62C.64D.66

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{π}{3}(4+14\sqrt{2})$B.$\frac{{14\sqrt{2}π}}{3}$C.$\frac{5π}{3}$D.$\frac{4π}{3}$

查看答案和解析>>

同步练习册答案