精英家教网 > 高中数学 > 题目详情
14.已知抛物线y2=4x的焦点为F,点P是抛物线上的动点,A(2,2),则|PA|+|PF|的最小值为3.

分析 设点P在准线上的射影为D,由抛物线的定义把问题转化为求|PD|+|PA|的最小值,同时可推断出当D,P,A三点共线时|PD|+|PA|最小,答案可得.

解答 解:设点A在准线上的射影为D,由抛物线的定义可知|PF|=|PD|
∴要求|PF|+|PA|的最小值,即求|PD|+|PA|的最小值,
只有当D,P,A三点共线时|PD|+|PA|最小,且最小值为2-(-1)=3  (准线方程为x=-1)
故答案为:3.

点评 本题考查抛物线的定义、标准方程,以及与之有关的最值问题,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若关于x的不等式4x-2x+1-a≤0在[1,2]上恒成立,则实数a的取值范围为a≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若f(x)=$\frac{x}{{{{log}_{\frac{1}{2}}}(2x-1)}}$,则f(x)的定义域为(  )
A.$(\frac{1}{2},1)$B.$(\frac{1}{2},+∞)$C.$(\frac{1}{2},1)∪(1,+∞)$D.$(\frac{1}{2},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.圆心为(1,-1),半径为2的圆的标准方程为(x-1)2+(y+1)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.命题“?x∈R,x2+6ax+1<0”为假命题,则a的取值范围是$[{-\frac{1}{3},\frac{1}{3}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列说法中:
①终边落在y轴上的角的集合是{α|α=$\frac{kπ}{2}$,k∈Z};
②函数y=2cos(x-$\frac{π}{4}$)图象的一个对称中心是($\frac{3π}{4}$,0);
③函数y=tanx在其定义域内是增函数;④为了得到函数y=sin(2x-$\frac{π}{3}$)的图象,只需把函数y=sin2x的图象向右平移$\frac{π}{6}$个单位长度.
其中正确说法的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法错误的是(  )
A.已知a,b,m∈R,命题“若am2<bm2,则a<b”为真命题
B.命题“?x0∈R,x02-x0>0”的否定是“?x∈R,x2-x≤0”
C.命题“p且q”为真命题,则命题p和命题q均为真命题
D.“x>3”是“x>2”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若{1,a,$\frac{b}{a}$}={0,a2,a+b},则a2009+b2009的值为(  )
A.0B.1C.-1D.1或-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an}的前n项和为Sn,n∈N*.已知a1=1,a2=$\frac{3}{2}$,a3=$\frac{5}{4}$,且4an+2=4an+1-an
(1)求a4的值;
(2)证明:{an+1-$\frac{1}{2}$an}为等比数列;
(3)求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案