精英家教网 > 高中数学 > 题目详情
9.命题“?x∈R,x2+6ax+1<0”为假命题,则a的取值范围是$[{-\frac{1}{3},\frac{1}{3}}]$.

分析 由命题间的逻辑关系可知,原命题为假命题,则命题的否定为真,只需判断命题的否定即可.

解答 解:由命题“?x∈R,x2+6ax+1<0”为假命题,
∴命题的否定为“?x∈R,x2+6ax+1≥0”为真命题,
∴△=36a2-4≤0,
∴a的范围为$[{-\frac{1}{3},\frac{1}{3}}]$,
故答案为$[{-\frac{1}{3},\frac{1}{3}}]$.

点评 考查了命题间的逻辑关系和二次函数的性质,属于基础题型,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.比较30.2与log30.2的大小,按从小到大的顺序为log30.2<30.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量|$\overrightarrow a}$|=4,$\overrightarrow e$为单位向量,当他们之间的夹角为$\frac{π}{3}$时,$\overrightarrow{a}$在$\overrightarrow{e}$方向上的投影与$\overrightarrow{e}$在$\overrightarrow{a}$方向上的投影分别为(  )
A.2$\sqrt{3}$,$\frac{\sqrt{3}}{2}$B.2,$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$,2$\sqrt{3}$D.2,2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日期12月1日12月2日12月3日12月4日12月5日
温差x(℃)101113128
发芽y(颗)2325302616
该农科所确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,剩下的2组数据用于回归方程检验.
(1)若选取的是12月1日与12月5日的2组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程$\stackrel{∧}{y}=\stackrel{∧}{b}x+\stackrel{∧}{a}$;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
(3)请预测温差为14℃的发芽数.
其中
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{{x}^{\;}}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=cos(πx-$\frac{π}{3}$)的最小正周期为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知抛物线y2=4x的焦点为F,点P是抛物线上的动点,A(2,2),则|PA|+|PF|的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在一次数学测试中,某班40名学生的成绩频率分布直方图如图所示(学生成绩都在[50,100]之间).
(Ⅰ)求频率分布直方图中a的值,并估算该班数学成绩的平均值;
(Ⅱ)若规定成绩达到90分及以上为优秀,从该班40名学生中任选2人,求至少有一人成绩为优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知椭圆方程为$\frac{x^2}{16}+\frac{y^2}{9}$=1,则它的两焦点之间的距离为$2\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已经集合M={x|1<x<4},N={x|x=2a+1,a∈M},则集合M∪N={x|1<x<9}.

查看答案和解析>>

同步练习册答案