精英家教网 > 高中数学 > 题目详情
8.若复数z=(cosθ-$\frac{4}{5}$)+(sinθ-$\frac{3}{5}$)i是纯虚数(i为虚数单位),则tan(θ-$\frac{π}{4}$)的值为(  )
A.7B.$-\frac{1}{7}$C.-7D.-7或$-\frac{1}{7}$

分析 复数z=(cosθ-$\frac{4}{5}$)+(sinθ-$\frac{3}{5}$)i是纯虚数,可得:cosθ-$\frac{4}{5}$=0,sinθ-$\frac{3}{5}$≠0,于是sinθ=-$\frac{3}{5}$,再利用同角三角函数基本关系式、和差化积公式即可得出.

解答 解:∵复数z=(cosθ-$\frac{4}{5}$)+(sinθ-$\frac{3}{5}$)i是纯虚数,
∴cosθ-$\frac{4}{5}$=0,sinθ-$\frac{3}{5}$≠0,
∴sinθ=-$\frac{3}{5}$,
∴tanθ=-$\frac{3}{4}$.
则tan(θ-$\frac{π}{4}$)=$\frac{tanθ-1}{1+tanθ}$=$\frac{-\frac{3}{4}-1}{1-\frac{3}{4}}$=-7.
故选:C.

点评 本题考查了纯虚数的定义、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.函数f(x)=$\frac{1}{x+1}$+$\frac{1}{x+2}$+$\frac{1}{x+3}$+…+$\frac{1}{x+2016}$图象的对称中心是(-1008.5,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.复数z满足(1+2i)•$\overline z=4+3i$,其中i是虚数单位,$\overline z$为z的共轭复数,那么z=2+i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,同时满足①在(0,$\frac{π}{2}$)上是增函数,②为偶函数,③以π为最小正周期的函数是(  )
A.f(x)=tanxB.f(x)=cos2xC.f(x)=|sin2x|D.f(x)=|sinx|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.阅读如图所示的流程图,运行相应的程序,则输出S的值为26.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知正数a,b满足$\frac{1}{a}$+$\frac{2}{b}$=2,则a+b的最小值是$\frac{1}{2}$(3+2$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.($\sqrt{x}$+$\frac{1}{x}$)n的展开式中,第4项的二项式系数与第5项的二项式系数之比为1:3.
(1)求展开式中的常数项;
(2)求二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若m,n∈R+,$\frac{1}{m}+\frac{1}{n}=1$,则下列命题正确的有(  )
①mn有最小值4,②m+n有最小值4,③m2+n2有最小值4.
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,若角A,B,C的对边成等差数列
(1)求证:tan$\frac{A}{2}$•tan$\frac{C}{2}$=$\frac{1}{3}$;
(2)求5cosA-4cosAcosC+5cosC的值.

查看答案和解析>>

同步练习册答案