精英家教网 > 高中数学 > 题目详情
20.若f(x)=x2-2(a-1)x+2在(-∞,3]上是减函数,则a的取值范围是[4,+∞).

分析 根据一元二次函数单调性的性质进行求解即可.

解答 解:若f(x)=x2-2(a-1)x+2在(-∞,3]上是减函数,
则函数的对称轴x=$-\frac{-2(a-1)}{2}$=a-1≥3,
即a≥4,
故答案为:[4,+∞);

点评 本题主要考查函数单调性的应用,根据一元二次函数单调性的性质建立对称轴和单调区间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某中学随机抽取50名高一学生调查其每天运动的时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,运动
的时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方图中x的值;
(2)定义运动的时间不少于1小时的学生称为“热爱运动”,若该校有高一学生1200人,请估计有多少学生“热爱运动”;
(3)设m,n表示在抽取的50人中某两位同学每大运动的时间,且已知m,n∈[40,60)∪[80,100],求事件“|m-n|>20”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知关于x的二次函数f(x)=ax2-4bx+1,设集合A={-1,1,2,3,4,5},B={-2,-1,1,2,3,4},分别从集合A和B中随机取一个数记为a和b,则函数y=f(x)在[1,+∞)上单调递增的概率为(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=2sinx(cosx+$\sqrt{3}$sinx).
(1)求f(x)的单调递增区间和最小正周期;
(2)在△ABC中,C=$\frac{π}{3}$且c=$\sqrt{3}$,若x=B时,f(x)取得最大值,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知圆C:x2+y2-4x=0与直线y=x+b相交于M,N两点,且满足CM⊥CN(C为圆心),则实数b的值为0或-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}是等差数列,且a1=3,a1+a2+a3=15.
(1)求数列{an}的通项公式;
(2)求数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.解关于x的不等式:x${\;}^{lo{g}_{a}x}$>$\frac{{x}^{4}\sqrt{x}}{{a}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=x2+a(b+1)x+a+b(a,b∈R),则“a=0”是“f(x)为偶函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某射击运动员进行射击训练,前三次射击在靶上的着弹点A、B、C刚好是边长分别为$5cm,6cm,\sqrt{13}cm$的三角形的三个顶点.
(Ⅰ) 该运动员前三次射击的成绩(环数)都在区间[7.5,8.5)内,调整一下后,又连打三枪,其成绩(环数)都在区间[9.5,10.5)内.现从这6次射击成绩中随机抽取两次射击的成绩(记为a和b)进行技术分析.求事件“|a-b|>1”的概率.
(Ⅱ) 第四次射击时,该运动员瞄准△ABC区域射击(不会打到△ABC外),则此次射击的着弹点距A、B、C的距离都超过1cm的概率为多少?(弹孔大小忽略不计)

查看答案和解析>>

同步练习册答案