精英家教网 > 高中数学 > 题目详情

【题目】设函数则不等式的解集为( )

A. B. C. D.

【答案】A

【解析】

根据题意,分析可得fx)为奇函数且在R上为增函数,则有f(1﹣2x)+fx)>0f(1﹣2x)>﹣fxf(1﹣2x)>f(﹣x1﹣2x>﹣x,解可得x的取值范围,即可得答案.

根据题意,函数fx)=2x﹣2x

f(﹣x)=2x﹣2x=﹣(2x﹣2x)=﹣fx),fx)为奇函数,

又由fx)=2x﹣2x,其导数为f′(x)=(2x+2xln2>0,

则函数fx)在R上为增函数,

f(1﹣2x)+fx)>0f(1﹣2x)>﹣fxf(1﹣2x)>f(﹣x1﹣2x>﹣x

解可得:x<1,

即不等式的解集为(﹣∞,1);

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于异面直线,有下列五个命题:

①过直线有且仅有一个平面,使

②过直线有且仅有一个平面,使

③在空间存在平面,使

④在空间不存在平面,使

⑤过异面直线外一点一定存在一个平面,使其中,

正确的命题的个数为(

A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数fx)=sinx的图象向右平移个单位,横坐标缩小至原来的倍(纵坐标不变)得到函数y=gx)的图象.

(1)求函数gx)的解析式;

(2)若关于x的方程2gx)-m=0在x∈[0,]时有两个不同解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正整数的所有约数之和用表示,(比如).试答下列各问:

(1)证明:如果互质,那么

(2)当的约数(),且.试证是质数.其次,如果是正整数,是质数,试证也是质数;

(3)设为正整数,为奇数),且.试证存在质数,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列1,1,3,3,,…,是由两个1,两个3,两个,…,两个按从小到大顺序排列,数列各项的和记为,对于给定的自然数,若能从数列中选取一些不同位置的项,使得这些项之和恰等于,便称为一种选项方案,和数为的所有选项方案的种数记为.试求:

的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx,给出下列判断:(1)函数的值域为;(2在定义域内有三个零点;(3图象是中心对称图象.其中正确的判断个数为( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某种气垫船的最大航速是海里小时,船每小时使用的燃料费用和船速的平方成正比.若船速为海里小时,则船每小时的燃料费用为元,其余费用(不论船速为多少)都是每小时元。甲乙两地相距海里,船从甲地匀速航行到乙地.

(1)试把船从甲地到乙地所需的总费用,表示为船速(海里小时)的函数,并指出函数的定义域;

(2)当船速为每小时多少海里时,船从甲地到乙地所需的总费用最少?最少费用为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}(n=1,2,3)满足an+1=2﹣|an|,若a1>0,则a1_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱的底面是菱形,EMN分别是的中点.

1)证明:平面

2)求点C到平面的距离.

查看答案和解析>>

同步练习册答案