精英家教网 > 高中数学 > 题目详情
已知向量
.
a
=(cos
B
2
1
2
)与向量
.
b
=(
1
2
,cos
B
2
)共线,其中A、B、C是△ABC的内角.
(Ⅰ)求角B的大小
(Ⅱ)若cosC=
3
5
,求cosA的值.
考点:二倍角的余弦,两角和与差的余弦函数,两角和与差的正弦函数
专题:平面向量及应用
分析:(I)利用向量共线定理、余弦函数的单调性即可得出;
(II)由cosC=
3
5
,C∈(0,π),利用同角三角函数基本关系式可得sinC=
4
5
,再利用两角和差的余弦公式即可得出cosA=cos(
π
3
-C)
解答: 解:(I)∵
a
b
共线,∴cos2
B
2
-
1
4
=0,
∵B∈(0,π),∴cos
B
2
=
1
2

B
2
=
π
3
,∴B=
3

(II)∵cosC=
3
5
,C∈(0,π),
sinC=
4
5

∴cosA=cos(
π
3
-C)
=
1
2
cosC+
3
2
sinC
=
3+4
3
10
点评:本题考查了向量共线定理、余弦函数的单调性、同角三角函数基本关系式、两角和差的余弦公式,考查了推理能力和计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知斜率为-
2
2
的直线与椭圆
x2
a2
+
y2
b2
=1,(a>b>0)交于两点,若这两点在x轴的射影恰好是椭圆的焦点,则e为(  )
A、
1
3
B、
1
2
C、
3
3
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex,g(x)=
k
2
x2+x+1.
(1)当k=1时,证明:f(x)≥g(x)-
x2
2

(2)若f(x)≥g(x),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面PAD⊥平面ABCD,四边形ABCD是矩形,AB=1,AD=2,P点在以AD为直径的半圆弧上运动(不包括端点)
(Ⅰ)证明:PA⊥PC;
(Ⅱ)当二面角P─BC─D达到最大值时,求直线AD与平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PB、PD与平面ABCD所成的角依次是45°和arctan
1
2
,AP=2,E、F依次是PB、PC的中点.
(1)求直线EC与平面PAD所成的角(结果用反三角函数值表示);
(2)求三棱锥P-AFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在斜三棱柱ABC-A1B1C1中,平面A1ACC1⊥平面ABC,AC⊥BC,A1B⊥C1C,AC=BC.
(1)求证A1A⊥A1C;
(2)若A1A=A1C=2,求三棱锥B1-A1BC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂2012年的生产总值为2000万元,技术改造后预计以后每年的生产总值比上一年增加5%,问:最早在哪一年生产总值超过3000万元?写出一个计算的算法,并画出流程图.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线C:y2=2px(p>0)上的点M分别向C的准线和x轴作垂线,两条垂线及C的准线和x轴围成边长为4的正方形,点M在第一象限.
(1)求抛物线C的方程及点M的坐标;
(2)过点M作倾斜角互补的两条直线分别与抛物线C交与A、B两点,如果点M在直线AB的上方,求△MAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+5(其中常数a,b∈R),f′(1)=3,x=-2是函数f(x)的一个极值点.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)在[0,1]上的最大值和最小值.

查看答案和解析>>

同步练习册答案