精英家教网 > 高中数学 > 题目详情
如图,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P为CD的中点,则
PA
PB
的值为
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:由题意和向量的线性运算求出
CD
DP
PC
,再求出
PC
PB
,代入
PA
PB
利用向量的数量积运算化简即可.
解答: 解:由题意可得,BC∥AD、BC=2,AD=4,则
AD
=2
BC

所以
CD
=
CB
+
BA
+
AD
=
BA
+
BC

因为P为CD的中点,所以
DP
=
PC
=-
1
2
CD
=-
1
2
(
BA
+
BC
)

因为
PA
=
PD
+
DA
=
PD
-2
BC
PB
=
PC
+
CB
,且AB=4,BC=2,
PA
PB
=(
PD
-2
BC
)•(
PC
+
CB

=
1
2
BA
-3
BC
)•(-
1
2
)(
BA
+3
BC

=-
1
4
×(
BA
2
-9
BC
2
)=5,
故答案为:5.
点评:本题考查向量的线性运算及其几何意义,以及向量数量积的运算,解题的关键是抓住向量的之间的关系,再结合已知条件化简.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某工厂有一容量为10吨的水池,水池中有进水管和出水管各一个,某天早晨同时打开进水管和出水管阀门,开始时池中蓄满了水,设经过x(小时)进水量P(吨)和出水量Q(吨)分别为P=2x,Q=8
x

(1)问经过多少小时,水池中的蓄水量y(吨)最小?并求出最小量.
(2)为防止水池中的水溢出,当水池再次蓄满水时,应关闭进水管阀门,问经过多少小时应关闭进水管阀门?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一次函数f(x)=2x-b,幂函数g(x)=xa,且知函数f(x)•g(x)的图象过(1,2),函数
g(x)
f(x)
的图象过(
2
,1),若函数h(x)=g(x)+f(x).
(1)求函数h(x)的解析式;
(2)若x∈[-3,-
3
],求y=
h(x)
x2
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1.
(1)求二面角A-DF-B的大小;
(2)试在线段AC上确定一点P,使PF与BC所成角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为△ABC外一点,D为BC边上一点,且
OC
+
OB
-2
OD
=0,若AB=3,AC=5.则
AD
BC
=(  )
A、-8B、8C、-2D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵A的逆矩阵A-1=
-
1
4
3
4
1
2
-
1
2
,求矩阵A的特征值以及属于每个特征值的一个特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(1,2),B(3,-1),C(3,4),则
AB
AC
(  )
A、11B、5C、-2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2|x|,g(x)=x2,构造函数F(x)=
g(x),f(x)≥g(x)
f(x),f(x)<g(x)
,那么函数y=F(x)(  )
A、有最大值1,最小值-1
B、有最小值-1,无最大值
C、有最大值1,无最小值
D、有最大值3,最小值1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn=rn-1(r>0,r≠1),且
a5
a2
=27.
(1)求r的值及数列{an}的通项公式;
(2)设bn=an2,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案