精英家教网 > 高中数学 > 题目详情
已知O为△ABC外一点,D为BC边上一点,且
OC
+
OB
-2
OD
=0,若AB=3,AC=5.则
AD
BC
=(  )
A、-8B、8C、-2D、2
考点:平面向量数量积的运算
专题:平面向量及应用
分析:由题意和向量的加法运算判断出D是BC的中点,由向量的加法、减法运算、向量的数量积化简
AD
BC
即可.
解答: 解:由题意知,
OC
+
OB
-2
OD
=0,则
OC
+
OB
=2
OD

所以D是BC的中点,
又AB=3,AC=5,
AD
BC
=
1
2
AC
+
AB
)•(
AC
-
AB
)=
1
2
AC
2
-
AB
2

=
1
2
(25-9)=8,
故选:B.
点评:本题考查向量的加、减法运算及其几何意义,以及向量数量积的运算,解题的关键是抓住向量的之间的关系,再结合已知条件化简.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα>sinβ,α∈(-
π
2
,0),β∈(π,
3
2
π),则(  )
A、α+β>π
B、α+β<π
C、α-β≥-
3
2
π
D、α-β≤-
3
2
π

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f(
x
y
)=f(x)-f(y)
(1)求f(1)的值,
(2)若f(6)=1,解不等式f(x+3)-f(
1
3
)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SB⊥平面ABCD,且SB=AB=AD=1,BC=2.
(1)求SA与CD成角;
(2)求面SCD与面SAB所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

有一根长为5cm,底面半径为0.5cm的圆柱形铁管,用一段铁丝在铁管上缠绕4圈,并使铁丝的两个端点落在圆柱的同一母线的两端,求铁丝的最短长度是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P为CD的中点,则
PA
PB
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂2014年第一季度生产的A、B、C、D四种型号的产品产量用条形图表示如图,现用分层抽样的方法从中选取50件样品参加四月份的一个展销会.
(1)问A、B、C、D四种型号的产品中各应抽取多少件?
(2)从50件样品中随机地抽取2件,求这2件产品恰好是不同型号产品的概率;
(3)从A、C型号的产品中随机地抽取3件,求抽取A种型号的产品2件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f(x)+1,若直线y=kx与函数y=f(x)的图象恰有9个不同的公共点,则实数k的值为(  )
A、2
6
-2
B、2
2
-4
C、2
6
-4
D、2
2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(2x,-3),若
a
⊥(
a
+
b
),则x=(  )
A、3
B、-
1
2
C、-3
D、
1
2

查看答案和解析>>

同步练习册答案