精英家教网 > 高中数学 > 题目详情
12.令y=f(x),给出一个语句如图所示,根据语句,可求得
f{f[f(-1)]}=5.

分析 先根据算法求出函数的解析式,然后根据自变量的值代入相应的解析式即可求出所求.

解答 解:根据算法程序得:f(x)=y=$\left\{\begin{array}{l}{\stackrel{{x}^{2}}{{x}^{3}+2}}&{\stackrel{x<0}{0≤x≤2}}\\{2x-1}&{x>2}\end{array}\right.$,
∴f(-1)=1.
f[f(-1)]=1+2=3,
f{f[f(-1)]}=2×3-1=5.
故答案为:5.

点评 本题主要考查了条件语句,以及函数值的求解,同时考查了阅读算法语句的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.如图,线段AB长度为2,点A,B分别在x轴的正半轴和y轴的正半轴上滑动,以线段AB为一边,在第一象限内作等边三角形,O为坐标原点,则$\overrightarrow{OC}$•$\overrightarrow{OB}$的取值范围是[0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}中,a1=1,a2n=a2n-1+(-2)n-1,a2n+1=a2n+4n,n∈N*
(1)求a2,a3
(2)求{an}的通项公式;
(3)记bn=a2n+2-a2n,求证:$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n}}$<$\frac{7}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设全集U={1,2,3,4,5},集合A={1,2,4},B={4,5},则集合A∩(∁UB)=(  )
A.{1,2}B.{3,5}C.{4}D.{5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=3sin(2x+\frac{π}{6})$,x∈R
(1)用五点法作出y=f(x)在长度为一个周期的闭区间上的简图;
(2)请说明函数y=f(x)的图象可以由正弦函数y=sinx的图象经过怎样的变化得到.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知直线mx+y+m-1=0上存在点(x,y)满足$\left\{\begin{array}{l}{x+y-3≤0}\\{x-2y-3≤0}\\{x>1}\end{array}\right.$,则实数m的取值范围为$({-\frac{1}{2},1})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题p:已知0<a<1,b>1,若x∈(0,1),则xa>xb;命题q:若x2-ax+1>0恒成立,则-2≤a≤2;则下列结论:
①命题“p∧q”是真命题;            ②命题“p∧(¬q)”是真命题;
③命题“(¬p)∨q”是真命题;         ④命题“(¬p)∨(¬q)”是真命题.
其中正确的是(  )
A.②③B.②④C.①②④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow{u}$=(x,y)与向量$\overrightarrow{v}$=(y,2y-x)的对应关系用$\overrightarrow{v}$=f($\overrightarrow{u}$)表示.
(1)证明:对于任意向量$\overrightarrow{a}$,$\overrightarrow{b}$及常数m、n,恒有f(m$\overrightarrow{a}$+n$\overrightarrow{b}$)=mf($\overrightarrow{a}$)+nf($\overrightarrow{b}$)成立.
(2)设$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(1,0),求向量f($\overrightarrow{a}$)及f($\overrightarrow{b}$)的坐标.
(3)求使f($\overrightarrow{c}$)=(3,5)成立的向量$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=sin2ωx+$\sqrt{3}$sinωx•sin(ωx+$\frac{π}{2}$)(ω>0)的最小正周期为π.
(1)求ω的值;
(2)求函数f(x)在区间[0,$\frac{2π}{3}$]上的取值范围.

查看答案和解析>>

同步练习册答案