精英家教网 > 高中数学 > 题目详情
8.过点P(3,1)的直线l与圆C:(x-2)2+(y-2)2=4相交于A,B两点,当弦AB的长取最小值时,直线l的倾斜角等于45°.

分析 由题意结合图象可得当弦AB的长取最小值时,直线l过P且与PC垂直,由斜率公式和直线的垂直关系可得.

解答 解:∵(3-2)2+(1-2)2=2<4,∴点P在圆C内部,
当弦AB的长取最小值时,直线l过P且与PC垂直,
由斜率公式可得kPC=$\frac{1-2}{3-2}$=-1,
故直线l的斜率为1,倾斜角为45°,
故答案为:45°

点评 本题考查直线和圆的位置关系,涉及直线的倾斜角和斜率以及垂直关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知命题p:?x∈R,x-1>lgx,命题q:?x≥0,x≥sinx,则(  )
A.命题p∨q是假命题B.命题p∧q是真命题
C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{9}=1(a>0)$的渐近线为$y=±\frac{3}{4}x$,则该双曲线的离心率为(  )
A.$\frac{3}{4}$B.$\frac{{\sqrt{7}}}{4}$C.$\frac{5}{4}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某一部件由三个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1200,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1200小时的概率为$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l的参数方程为$\left\{\begin{array}{l}{x=4+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$ (t为参数),以坐标原点为极点,x轴的正半轴为极轴建建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.
(I)求曲线C的直角坐标方程与直线l的极坐标方程;
(Ⅱ)若直线θ=$\frac{π}{6}$与曲线C交于点A(不同于原点),与直线l交于点B,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求抛物线$\left\{\begin{array}{l}{x=2t}\\{y=2{t}^{2}+1}\end{array}\right.$(t为参数)的准线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在区间[-4,4]上随机地取一个实数x,则事件“x2-2x-3≤0”发生的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在长为2的线段AB上任意取一点C,以线段AC为半径的圆面积小于π的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知圆O与直线l相切于点A,点P,Q同时从A点出发,P沿着直线l向右、Q沿着圆周按逆时针以相同的速度运动,当Q运动到点A时,点P也停止运动,连接OQ,OP(如图),则阴影部分面积S1,S2的大小关系是(  )
A.S1=S2B.S1≤S2
C.S1≥S2D.先S1<S2,再S1=S2,最后S1>S2

查看答案和解析>>

同步练习册答案