精英家教网 > 高中数学 > 题目详情
13.若?x0∈(0,+∞),不等式ax-lnx<0成立,则a的取值范围是(  )
A.$(-∞,\frac{1}{e}]$B.(-∞,e]C.$(-∞,\frac{1}{e})$D.(-∞,e)

分析 若?x0∈(0,+∞),不等式ax-lnx<0成立,则?x0∈(0,+∞),不等式a<$\frac{lnx}{x}$成立,令f(x)=$\frac{lnx}{x}$,则a<f(x)max,利用导数法,求出函数的最大值,可得答案.

解答 解:若?x0∈(0,+∞),不等式ax-lnx<0成立,
则?x0∈(0,+∞),不等式a<$\frac{lnx}{x}$成立,
令f(x)=$\frac{lnx}{x}$,则a<f(x)max
∵f′(x)=$\frac{1-lnx}{{x}^{2}}$,
则x∈(0,e)时,f′(x)>0,f(x)=$\frac{lnx}{x}$为增函数,
x∈(e,+∞)时,f′(x)<0,f(x)=$\frac{lnx}{x}$为减函数,
故x=e时,f(x)max=$\frac{1}{e}$,
故a的取值范围是$(-∞,\frac{1}{e})$,
故选:C

点评 本题以命题的真假判断与应用为载体,考查了存在性问题,利用导数求函数的最值,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在复平面内复数z满足3+4i=(1-i)z (i 是虚数单位),则复数z 的对应点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.2015赛季CBA(中国男子职业篮球联赛)总决赛于3月22号结束,北京首钢队4:2战胜辽宁药都队卫冕成功.如图是参加此次总决赛的甲、乙两名运动员在
6场比赛中的得分茎叶图,两人得分的平均数分别${\overline{x}}_{甲}$、${\overline{x}}_{乙}$,得分的方差分别为$\overline{{S}_{甲}}$、$\overline{{S}_{乙}}$,则下面正确的结论是(  )
A.${\overline{x}}_{甲}$>${\overline{x}}_{乙}$,$\overline{{S}_{甲}}$>$\overline{{S}_{乙}}$B.${\overline{x}}_{甲}$>${\overline{x}}_{乙}$,$\overline{{S}_{甲}}$<$\overline{{S}_{乙}}$
C.${\overline{x}}_{甲}$<${\overline{x}}_{乙}$,$\overline{{S}_{甲}}$>$\overline{{S}_{乙}}$D.${\overline{x}}_{甲}$<${\overline{x}}_{乙}$,$\overline{{S}_{甲}}$<$\overline{{S}_{乙}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知α∈(-$\frac{π}{3}$,$\frac{2π}{3}$),tan(α-$\frac{π}{6}$)=-2,则sinα=(  )
A.$\frac{{\sqrt{5}-2\sqrt{15}}}{10}$B.$\frac{{\sqrt{5}+2\sqrt{15}}}{10}$C.$\frac{{\sqrt{15}+2\sqrt{5}}}{10}$D.$\frac{{\sqrt{15}-2\sqrt{5}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.圆ρ=4cosθ-2sinθ的圆心坐标是(  )
A.(2,1)B.(2,-1)C.(-2,1)D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线方程为(2+m)x+(1-2m)y+4-3m=0.
(1)证明:直线恒过定点;
(2)m为何值时,点Q(3,4)到直线的距离最大,最大值为多少?
(3)若直线分别与x轴、y轴的负半轴交于A、B两点,求△AOB面积的最小值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为$(\frac{4}{5},-\frac{3}{5})$,∠AOC=α,若|BC|=1,则$\sqrt{3}{cos^2}\frac{α}{2}-sin\frac{α}{2}cos\frac{α}{2}-\frac{{\sqrt{3}}}{2}$的值为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数的值域为R的是(  )
A.y=3x(x>1)B.y=$\frac{8}{x}$C.y=-4x+5D.y=x2-6x+7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}中,a1=0,其前n项和Sn满足${S_n}=n{a_n}+\frac{1}{2}n({n-1})$.
(1)求数列{an}的通项公式;
(2)设${b_n}=\left\{\begin{array}{l}n•{2^{a_n}},n=2k-1\\ \frac{1}{{{n^2}+2n}},n=2k\end{array}\right.({k∈{{N}^*}})$,求数列{bn}的前2n项和T2n

查看答案和解析>>

同步练习册答案