分析 (1)由正弦定理可得:$\sqrt{2}$sinA=2sinBsinA,sinA≠0,化为sinB=$\frac{\sqrt{2}}{2}$,即可得出;
(2)利用余弦定理即可得出.
解答 解:(1)∵$\sqrt{2}$a=2bsinA,由正弦定理可得:$\sqrt{2}$sinA=2sinBsinA,sinA≠0,化为sinB=$\frac{\sqrt{2}}{2}$,B∈(0,π),∴B=$\frac{π}{4}$或$\frac{3π}{4}$.
(2)∵a2+b2+$\sqrt{2}$ab=c2,∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{-\sqrt{2}ab}{2ab}$=-$\frac{\sqrt{2}}{2}$,又C∈(0,π),
∴C=$\frac{3π}{4}$.
点评 本题考查了正弦定理余弦定理的应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 3174 | B. | 1587 | C. | 456 | D. | 6828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{32}{8}$ | B. | $\frac{32}{5}$ | C. | $\frac{8\sqrt{2}}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com