精英家教网 > 高中数学 > 题目详情
7.Rt△ABC中,∠A=90°,sin$\frac{B}{2}$sin$\frac{C}{2}$=$\frac{1}{8}$.若∠B,∠C的平分线的长的乘积为8,BC=4.

分析 由条件求得角平分线BM、CN的解析式,可得$\frac{bc}{cos\frac{B}{2}•cos\frac{C}{2}}$=8,即bc=8cos$\frac{B}{2}$•cos$\frac{C}{2}$ ①.sin$\frac{B}{2}$sin$\frac{C}{2}$=$\frac{1}{8}$,求得bc=16sinB•sinC,再利用正弦定理求得a2=$\frac{bc}{sinB•sinC}$ 的值,可得a=BC的值.

解答 解:如图所示:Rt△ABC中,∠A=90°,BM、CN分别
为∠B、∠C的平分线,
则BM=$\frac{AB}{cos\frac{B}{2}}$=$\frac{c}{cos\frac{B}{2}}$,CN=$\frac{AC}{cos\frac{C}{2}}$=$\frac{b}{cos\frac{C}{2}}$,
由∠B,∠C的平分线的长的乘积为8,
可得$\frac{bc}{cos\frac{B}{2}•cos\frac{C}{2}}$=8,即bc=8cos$\frac{B}{2}$•cos$\frac{C}{2}$ ①.
再根据正弦定理可得$\frac{bc}{sinB•sinC}$=$\frac{{a}^{2}}{{sin}^{2}A}$=a2,即.
∵sin$\frac{B}{2}$sin$\frac{C}{2}$=$\frac{1}{8}$,∴8sin$\frac{B}{2}$•sin$\frac{C}{2}$=1,
∴bc=8cos$\frac{B}{2}$•cos$\frac{C}{2}$•1=8cos$\frac{B}{2}$•cos$\frac{C}{2}$•8sin$\frac{B}{2}$•sin$\frac{C}{2}$=16sinB•sinC,
∴a2=$\frac{bc}{sinB•sinC}$=16,∴a=4,即 BC=4,
故答案为:4.

点评 本题主要考查直角三角形中的边角关系,正弦定理、二倍角的正弦公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F(2,0),点P(2,$\frac{{\sqrt{6}}}{3}$)在椭圆上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F的直线,交椭圆C于A、B两点,点M在椭圆C上,坐标原点O恰为△ABM的重心,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某中学共8个艺术社团,现从中选10名同学组成新春社团慰问小组,其中书法社团需选出3名同学,其他各社团各选出1名同学,现从这10名同学中随机选取3名同学,到社区养老院参加“新春送欢乐”活动(每位同学被选到的可能性相同),则选出的3名同学来自不同社团的概率为(  )
A.$\frac{7}{10}$B.$\frac{7}{24}$C.$\frac{49}{60}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.定义$\overline{abc}$是一个三位数,其中各数位上的数字a,b,c∈{0,1,2,3,4,5,6,7,8,9}且不全相同,定义如下运算f:把$\overline{abc}$的三个数字a,b,c自左到右分别由大到小排列和由小到大排列(若非零数字不足三位则在前面补0),然后用“较大数”减去“较小数”,例如:f(100)=100-001-099,f(102)=210-0.12-198,如下定义一个三位数序列:第一次实施运算f的结果记为$\overline{{a}_{1}{b}_{1}{c}_{1}}$,对于n>1且n∈N,$\overline{{a}_{n}{b}_{n}{c}_{n}}=f(\overline{{a}_{n-1}{b}_{n-1}{c}_{n-1}})$,将$\overline{{a}_{n}{b}_{n}{c}_{n}}$的三个数字中的最大数字与最小数字的差记为dn
(Ⅰ)当$\overline{abc}$=636时,求$\overline{{a}_{1}{b}_{1}{c}_{1}}$,$\overline{{a}_{2}{b}_{2}{c}_{2}}$及d2的值;
(Ⅱ)若d1=6,求证:当n>1时,dn=5;
(Ⅲ)求证:对任意三位数$\overline{abc}$,n≥6时,$\overline{{a}_{n}{b}_{n}{c}_{n}}$=495.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若α是第二象限角,$tan(\frac{π}{3}+α)=\frac{4}{3}$,则$cos(\frac{π}{3}+α)$=(  )
A.$-\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$±\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$f(α)=\frac{sin(π-α)cos(2π-α)tan(-α+π)}{tan(-π-α)sin(-π-α)}$
(Ⅰ)化简f(α);  
(Ⅱ)若α是第三象限角,且cos($α-\frac{3π}{2}$)=$\frac{{2\sqrt{6}}}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某人从A处出发,沿北偏东60°行走3$\sqrt{3}$km到B处,再沿正东方向行走2km到C处,则A,C两地距离为7km.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\frac{1}{\sqrt{2^x-1}}$+ln(x-1)的定义域是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题p:若ab=0,则a=0;命题q:3≥3,则(  )
A.“p或q”为假B.“p且q”为真C.p真q假D.p假q真

查看答案和解析>>

同步练习册答案