精英家教网 > 高中数学 > 题目详情
已知椭圆的焦点在x轴上,一个顶点为A(0,-1),其右焦点到直线x-y+2
2
=0
的距离为3,则椭圆的方程为
 
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由已知条件设椭圆方程为
x2
a2
+y2=1
,(a>1),由右焦点到直线x-y+2
2
=0
的距离为3,利用点到直线的距离公式求出a2,由此能求出椭圆方程.
解答: 解:∵椭圆的焦点在x轴上,一个顶点为A(0,-1),
∴设椭圆方程为
x2
a2
+y2=1
,(a>1)
∴椭圆的右焦点F(
a2-1
,0),
∵右焦点到直线x-y+2
2
=0
的距离为3,
|
a2-1
-0+2
2
|
1+1
=3,
解得a2=3,
∴椭圆方程为
x2
3
+y2=1

故答案为:
x2
3
+y2=1
点评:本题考查椭圆方程的求法,是中档题,解题时要认真审题,注意点到直线的距离公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
经过点M(
2
,1)
,离心率为
2
2

(1)求椭圆C的方程:
(2)过点Q(1,0)的直线l与椭圆C相交于A、B两点,点P(4,3),记直线PA,PB的斜率分别为k1,k2,当k1•k2最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平行六面体ABCD-A1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD上的射影是O.
(1)求证:平面O1DC⊥平面ABCD;
(2)若∠A1AB=60°,求平面BAA1与平面CAA1的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科做)如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠ABC=90°,BC∥AD,且AB=AD=2BC,顶点P在底面ABCD内的射影恰好落在AB的中点O上.
(1)求证:PD⊥AC;
(2)若PO=AB,求直线PD与AB所成角的余弦值;
(3)若平面APB与平面PCD所成的二面角为45°,求
PO
BC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图①,在平面内,ABCD是∠BAD=60°且AB=a的菱形,ADMA1和CDNC1都是正方形. 将两个正方形分别沿AD,CD折起,使M与N重合于点D1.设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧(图②).
(1)求证:不管点E如何运动都有CE∥面ADD1
(2)当线段BE=
3
2
a时,求二面角E-AC-D1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

P为双曲线
x2
9
-
y2
16
=1
上一点,F1、F2是它的两个焦点,当∠F1PF2为钝角时,点P的纵坐标的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+ax+21
x+1
 (a∈R)
,若对于任意的x∈N+,f(x)≥3恒成立,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

y=sin(ωx+φ),ω>0与y=a函数图象相交有相邻三点,从左到右为P、R、Q,若PR=3RQ,则a的值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1中,直线DB1与平面ABCD所成角的正弦值为
 

查看答案和解析>>

同步练习册答案