精英家教网 > 高中数学 > 题目详情
P为双曲线
x2
9
-
y2
16
=1
上一点,F1、F2是它的两个焦点,当∠F1PF2为钝角时,点P的纵坐标的取值范围是
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设P(x,y),根据双曲线方程求得两焦点坐标,根据∠F1PF2是钝角推断出推断出
PF1
PF2
<0且y≠0,求得x和y的不等式关系,求得y的范围.
解答: 解:设P(x,y),则
∵F1(-5,0),F2(5,0),
PF1
=(-5-x,-y),
PF2
=(5-x,-y),
PF1
PF2
=(-5-x,-y)•(5-x,-y)=x2+y2-25=
25
16
y2
-9,
∵∠F1PF2为钝角,
25
16
y2
-9<0且y≠0,
∴-
12
5
<y<
12
5
且y≠0.
故答案为:-
12
5
<y<
12
5
且y≠0.
点评:本题主要考查了双曲线的简单性质和解不等式,∠F1PF2是钝角推断出
PF1
PF2
<0,是解题关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=2,AD=4,DC=3,PA=5,E∈PC,AC∩BD=F.
(1)若
CE
EP
=
3
2
,求证:EF∥平面PAB;
(2)若FE⊥PC,求二面角E-DB-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥平面ABCD,∠BAD=
π
3
,AD=2.
(1)求证:平面FCB∥平面AED;
(2)若二面角A-EF-C为直二面角,求直线BC与平面AEF所成的角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:5x-2y+3m(3m+1)=0和直线l2:2x+6y-3m(9m+20)=0,求:
(1)两直线l1、l2交点的轨迹方程;
(2)m取何值时,直线l1与l2的交点到直线4x-3y-12=0的距离最短,最短距离是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦点在x轴上,一个顶点为A(0,-1),其右焦点到直线x-y+2
2
=0
的距离为3,则椭圆的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R时,函数f(x)=m(x2-1)+x-a恒有零点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3x,若对于任意实数α和β恒有不等式|f(2sinα)-f(2sinβ)|≤
1
m+1
成立,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知an=2nsin2
3
,n∈N*Sn=a1+a2+…+an
,则S30=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从8名男同学,2名女同学中选3名同学开会,至少有1名女同学的选法有
 
种.

查看答案和解析>>

同步练习册答案