精英家教网 > 高中数学 > 题目详情
如图,AB是圆O的直径,
AD
=
DE
,AB=10,BD=8,则DE=
 
;DC=
 

考点:与圆有关的比例线段
专题:立体几何
分析:由已知得∠ADB=90°,DE=AD=6,由∠BAC=∠EDC,∠ABC=∠DEC,由此能证明△ABC≌△DEC,从而能求出DC.
解答: 解:∵AB是圆O的直径,
AD
=
DE
,AB=10,BD=8,
∴∠ADB=90°,∴DE=AD=
100-64
=6,
∵∠BAC=∠EDC,∠ABC=∠DEC,
∴△ABC≌△DEC,
DE
AB
=
DC
AC
=
3
5

设DC=3k,则AC=5k,k>0
∴36+9k2=25k2,解得k=
3
2

∴DC=3k=
9
2

故答案为:6,
9
2
点评:本题考查线段长的求法,解题时要认真审题,注意圆的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(X)=
x2+a
ex
(x∈R)(e是自然对数的底数).
(1)当a=-15时,求f(x)的单调区间;
(2)若f(x)在区间[
1
e
,e]上是增函数,求实数a的取值范围;
(3)证明
1+12
e
+
1+22
e2
+
1+32
e3
+…+
1+n2
en
5n
4
e
对一切n∈N*恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

以两直线2x±3y=0为渐近线,且实轴长为6的双曲线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在R上的函数f(x),有下列4个命题:
①若f(x)是奇函数,则f(x-1)的图象关于A(-1,0)对称.
②若f(x)=2x与g(x)=log2x,则函数f(x)与g(x)得图象关于y=x对称.
③若函数的图象f(x-1)关于直线x=1对称,则f(x)为偶函数.
④f(x)是偶函数,且f(x)在[a,b]上是减函数,则f(x)在[-b,-a]上也是减函数.
其中正确的命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2x-1
+x的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ax-2(a>0,且a≠1)的图象必经过点
 

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两辆车去同一货场装货物,货场每次只能给一辆车装货物,所以若两辆车同时到达,则需要有一辆车等待.已知甲、乙两车装货物需要的时间都为20分钟,倘若甲、乙两车都在某1小时内到达该货场(在此期间货场没有其他车辆),则至少有一辆车需要等待装货物的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:椭圆
x2
25
+
y2
9
=1与
x2
9-k
+
y2
25-k
=1(0<k<9)有相同焦点,命题q:函数y=
|x-1|-2
的定义域是(-∞,-1]∪[3,+∞),则(  )
A、“p或q”为假
B、“p且q”为真
C、p真q假
D、p假q真

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
C
0
n
+2
C
1
n
+22
C
2
n
+…+2n
C
n
n
=729,则
C
1
n
+
C
3
n
+
C
5
n
的值等于(  )
A、64B、32C、63D、31

查看答案和解析>>

同步练习册答案