| A. | 6 | B. | 12 | C. | 5 | D. | 10 |
分析 由已知可求A,B为锐角,sinA,sinB的值,从而可求sinC=sin(A+B)=1,角C为直角,即可求得AC的值,由三角形面积公式即可求解.
解答 解:∵cosA=$\frac{3}{5}$<cosB=$\frac{4}{5}$,
∴A,B为锐角,则sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{4}{5}$,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{3}{5}$,
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{4}{5}×\frac{4}{5}+\frac{3}{5}×\frac{3}{5}$=1,角C为直角,
∵BC=4,∴AB=$\frac{BC}{sinA}$=$\frac{4}{\frac{4}{5}}$=5,AC=ABsinB=5×$\frac{3}{5}$=3,
∴△ABC的面积=$\frac{1}{2}×AC×BC$=$\frac{1}{2}×3×4$=6.
故选:A.
点评 本题主要考查了同角三角函数关系式的应用,考查了三角形内角和定理,两角和的正弦函数公式及三角形面积公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 30 | B. | 31 | C. | 32 | D. | 33 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π-2}{4π}$ | B. | $\frac{3π+2}{4π}$ | C. | $\frac{π+2}{4π}$ | D. | $\frac{3π-2}{4π}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6+4$\sqrt{5}$ | B. | 9+2$\sqrt{5}$ | C. | 12+2$\sqrt{5}$ | D. | 20+2$\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com