精英家教网 > 高中数学 > 题目详情
7.已知△ABC中,cosA=$\frac{3}{5}$,cosB=$\frac{4}{5}$,BC=4,则△ABC的面积为(  )
A.6B.12C.5D.10

分析 由已知可求A,B为锐角,sinA,sinB的值,从而可求sinC=sin(A+B)=1,角C为直角,即可求得AC的值,由三角形面积公式即可求解.

解答 解:∵cosA=$\frac{3}{5}$<cosB=$\frac{4}{5}$,
∴A,B为锐角,则sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{4}{5}$,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{3}{5}$,
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{4}{5}×\frac{4}{5}+\frac{3}{5}×\frac{3}{5}$=1,角C为直角,
∵BC=4,∴AB=$\frac{BC}{sinA}$=$\frac{4}{\frac{4}{5}}$=5,AC=ABsinB=5×$\frac{3}{5}$=3,
∴△ABC的面积=$\frac{1}{2}×AC×BC$=$\frac{1}{2}×3×4$=6.
故选:A.

点评 本题主要考查了同角三角函数关系式的应用,考查了三角形内角和定理,两角和的正弦函数公式及三角形面积公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.高三(3)班共有学生56人,座号分别为1,2,3,…,56,现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知3号、17号、45号同学在样本中,那么样本中还有一个同学的座号是(  )
A.30B.31C.32D.33

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知实数x,y满足x>y,求证:2x+$\frac{1}{{x}^{2}-2xy+{y}^{2}}$≥2y+3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.记集合A={(x,y)|x2+y2≤16},集合B={(x,y)|x+y-4≤0,(x,y)∈A}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点P(x,y),则点P落在区域Ω2中的概率为(  )
A.$\frac{π-2}{4π}$B.$\frac{3π+2}{4π}$C.$\frac{π+2}{4π}$D.$\frac{3π-2}{4π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求(x2+$\frac{1}{{x}^{2}}$-2)5的展开式中的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知实数x,y满足条件 $\left\{\begin{array}{l}x≥0\\ 4x+3y≤4\\ y≥0\end{array}$,则 z=$\frac{x+y+1}{x}$最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合A={x|x-1>0},集合B={x|x≤3},则A∩B=(  )
A.(-1,3)B.(1,3]C.[1,3)D.[-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知四棱锥P-ABCD的三视图如图所示,则此四棱锥的侧面积为(  )
A.6+4$\sqrt{5}$B.9+2$\sqrt{5}$C.12+2$\sqrt{5}$D.20+2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴建立极坐标系.已知直线l的参数方程为$\left\{\begin{array}{l}{x=5-at}\\{y=-1-t}\end{array}\right.$(t为参数),圆C的极坐标系方程为ρ=2$\sqrt{2}$cos(θ-$\frac{π}{4}$),若圆C关于直线l对称,则a的值为2.

查看答案和解析>>

同步练习册答案