精英家教网 > 高中数学 > 题目详情
14.已知集合M={x|2x-3<1},集合N={x|(x+1)(x-3)<0},则M∩N=(  )
A.MB.NC.{x|-1<x<2}D.{x|x<3}

分析 求出M与N中不等式的解集确定出M与N,找出M与N的交集即可.

解答 解:由M中不等式解得:x<2,即M={x|x<2},
由N中不等式解得:-1<x<3,即N={x|-1<x<3},
则M∩N={x|-1<x<2},
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,已知圆C1:x2+y2=4,圆C2:(x-2)2+y2=4.
(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别求圆C1与圆C2的极坐标方程及两圆交点的极坐标;
(Ⅱ)求圆C1与圆C2的公共弦的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知圆C的方程为x2+y2-2x+2y-2=0,若以直线y=kx+2(k∈Z)上任意一点为圆心,以1为半径的圆与圆C至多有一个公共点,则k的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如下表:
支持不支持合计
中型企业8040120
小型企业240200440
合计320240560
(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?
(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.0500.0250.010
k03.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图的程序框图,当k的值为2015时,则输出的S值为(  )
A.$\frac{2013}{2014}$B.$\frac{2014}{2015}$C.$\frac{2015}{2016}$D.$\frac{2016}{2017}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知在△ABC中,有(sinA+sinB+sinC)(a-b+c)=asinC,则∠B=120°..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{m}$=($\sqrt{3}$sinx,sinx),$\overrightarrow{n}$=(cosx,-sinx),且f(x)=2$\overrightarrow{m}$•$\overrightarrow{n}$+2.
(Ⅰ)求函数f(x)的最大值,并求出此时的x的取值;
(Ⅱ)函数f(x)图象与y轴的交点、y轴右侧第一个最低点、与x轴的第二个交点分别记为P,Q,R,求$\overrightarrow{QP}$•$\overrightarrow{QR}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“|AB|=$\sqrt{2}$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.有下列叙述:
①“x=y”的反设是“x>y或x<y”; 
②“a>b”的反设是“a<b”;
③“三角形的外心在三角形外”的反设是“三角形的外心在三角形内”;
④“三角形最多有一个钝角”的反面是“三角形没有钝角”.
其中正确的叙述有①.

查看答案和解析>>

同步练习册答案