精英家教网 > 高中数学 > 题目详情
已知函数y=Asin(ωx+φ)在同一周期内,当x=
π
12
时,取得最大值y=3,当x=
12
时,取得最小值y=-3,则函数的解析式为(  )
A、y=3sin(2x-
π
3
B、y=3sin(
x
2
-
π
6
C、y=3sin(2x+
π
6
D、y=3sin(2x+
π
3
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:三角函数的图像与性质
分析:由函数的最值求出A,由周期求出ω,由特殊点的坐标求出φ的值,可得函数的解析式.
解答: 解:由题意可得
1
2
T=
1
2
ω
=
12
-
π
12
,求得ω=2.
再根据函数的最大值、最小值可得A=3,
再把点(
π
12
,3)代入函数的解析式可得 3=3sin(
π
6
+φ),
∴sin(
π
6
+φ)=1,∴可取φ=
π
3
,∴函数的解析式为y=3sin(2x+
π
3
),
故选:D.
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知(4
4
1
x
+
3x2
n展开式中的倒数第三项的二项式系数为45,则n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读下题的解题方法:
例题:已知x>0,y>0,且x+y=1,求
1
x
+
2
y
的最小值.
解:
1
x
+
2
y
=(x+y)(
1
x
+
2
y
)=1+
2x
y
+
y
x
+2≥3+2
2x
y
y
x
=3+2
2
,当且仅当
2x
y
=
y
x
x+y=1.
时,即
x=
2
-1
y=2-
2
.
时,取等号.∴当
x=
2
-1
y=2-
2
.
时,
1
x
+
2
y
取最小值,其最小值为3+2
2

类比上述解题方法,可求得函数f(x)=
4
x
+
9
1-2x
,x∈(0,
1
2
)的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程
y
=0.74x+50
零件数x(个)1020304050
加工时间y(min)62mn8189
则m+n的值为(  )
A、137B、129
C、121D、118

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式an=2014sin
2
,则a1+a2+…+a2014=(  )
A、2012B、2013
C、2014D、2015

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|x+1|(2x-1)≥0的解集是(  )
A、[
1
2
,+∞)
B、(-∞,-1]∪[
1
2
,+∞)
C、{-1}∪[
1
2
,+∞)
D、[-1,-
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数n后,输出的S∈(30,40),那么n的值为(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(π-α)=-
12
13
,π<α<
2
,则tanα=(  )
A、
5
12
B、-
5
12
C、
12
5
D、-
12
5

查看答案和解析>>

科目:高中数学 来源: 题型:

某校有学生2000人,其中高一年纪的学生与高三年级的学生之比为3:4,从中抽取一个容量为40的样本,高二年级恰好抽取了12人.求各年级的人数及高一年级、高三年级各抽取的人数.

查看答案和解析>>

同步练习册答案